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Abstract. In this paper we present a method for tracking of anatomical
landmarks in the liver. Our 4D ultrasound tracking method is based on
global and local rigid registration schemes. We evaluate our method on
the dataset that was presented in the MICCAI 2015 Challenge on Liver
Ultrasound Tracking (CLUST 2015). On the test set a mean tracking
error of 1.62 + 0.94 mm is achieved.

1 Introduction

Ultrasound (US) is used by clinicians to image the human anatomy. It is an
inexpensive, non-invasive and portable imaging modality. It is widely used in di-
agnostics. As US imaging is real-time it can be used for interventions and therapy.
The anatomy can be tracked real-time. Some of the applications are tissue mo-
tion analysis and image guidance during interventions. One of the main purpose
of an US tracking approach is to incorporate (pre-operative) planning informa-
tion (to guide visualization), or to integrate preoperative imaging data during
interventions. Tracking or motion compensation algorithms helps to negate the
motion caused by the probe or the patient and the breathing motion in partic-
ular.

Several methods for tracking of anatomical landmarks [5,7,8] and motion
tracking of liver [4,6,9-12] in US have been proposed in literature. Our method
is based on the previous work described in Banerjee et al. [2] and [3]. The previous
methods were developed to track/register US liver volumes. In this work these
methods are used to perform the specific task of tracking anatomical landmarks
in the liver. The method is evaluated on the CLUST 2015 challenge datasets.

2 Tracking anatomical landmarks

We briefly review the register to reference strategy (RTR) [3] in Subsection 2.1
and the register to reference by tracking strategy (RTRT) [2] in Subsection 2.2
which are the core components of our landmark tracking approach. In Subsec-
tion 2.3 we discuss the landmark tracking approach, see the block diagram in
Figure 1.
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Fig. 1. Block diagram - tracking of anatomical landmarks.
2.1 Step 1: RTR [3]

The RTR approach [3] is a 3D to 3D US registration technique where the stream-
ing input frame (t,) is directly registered to the reference frame (ts). It is
based on a block-matching scheme followed by an outlier-rejection scheme. For
a set of points (generated using a grid structure or a Gaussian distribution, see
the global point set and the local point set in Figure 2) located in the fixed
image, block-matching is used to find corresponding locations in the moving
image. The correspondences from the block-matching are inputs to the outlier
rejection scheme. The outlier rejection scheme uses geometric and appearance
consistency criteria to determine the block-matching results that can be trusted.
The method then uses only the selected block-matching results from the outlier
rejection scheme to estimate a rigid transformation using the approach described
by Arun et al. [1]. For details refer [3].

2.2 Step 2: RTRT [2]

The RTRT approach [2] is a 4D US registration/tracking technique, where the
registration is performed in two steps. In the first step (Step la), the stream-
ing input frame (t,) is registered to the previous frame in the temporal do-
main (t,—1). In the second step (Step 1b), the previously estimated transfor-
mation (7{,cfn—1)) and the transformation from the first step (7(,,—1r)) are
used to initialize the registration between the streaming input frame and the
reference frame, by composing the transformations as T(,cfn—1) * T(n—1,n)- To
reduce the accumulation of error the reference frame is re-registered to the
streaming input frame which was earlier transformed using the transformation
Tirefn—1) * T(n—1,n), resulting in the final transformation, written as T(,.cf ), see



Fig. 2. Global and local point set: Left - Global point set generated using a grid
structure (blue color), Middle - Local point set (green color), Right - Global cum local
point set generated using a Gaussian distribution (0=10 mm).

Figure 1. The RTRT approach additionally performs efficient tracking of points
in the temporal domain. The tracking starts with a set of ¢ points (generated
using a grid structure or a Gaussian distribution, see the global point set and the
local point set in Figure 2) located in the fixed/reference image. Points that are
consistently tracked are retained and the rest of the points are rejected. Addi-
tional points are introduced from a distribution (could be the same distribution
as used earlier) if the number of points for tracking is less than ¢. For details re-
fer [2]. Note that in the next cycle of the RTRT approach, the current estimated
transformation T,y ) is used in determining the transformation between the
reference volume (t,.y) and the next US volume (t,41), written as T{(,cf n41)-

2.3 Tracking landmarks

The anatomical landmark tracking approach, see Figure 1, consists of the follow-
ing two rigid registration steps. First, in the global 4D registration/tracking step,
the RTRT strategy is used track the whole (liver) US volume (T, ,)). Second,
in the local 3D registration step, we refine the tracking result by performing
registration using the neighborhood region close to the anatomical landmark
(T(/ref,n )

Both the RTR and RTRT strategies use block-matching followed by an outlier
rejection scheme to find correspondences between the US volumes. Input to the
block-matching module is a point set. The portion/region of the image used for
the registration/tracking is determined by the locations of the points in the US
volume. As shown in the block diagram in Figure 1, a combination of a global
and a local point set is used to perform a global 4D tracking/registration and
only a local point set is used to perform a local 3D registration. The global point
set is generated using a grid structure spread over the entire US volume, the
local point set is a collection of points in the neighborhood of the anatomical
landmark (see Figure 2).

3 Experiment and results

The CLUST 2015 challenge dataset is used to evaluate the performance of the
method. The challenge contained 16 4D sequences from multiple sources. The



Table 1. Summary of the data

Source| Traning Test Image size Image res. |Frame rate Scanner Probe
Sequences|Sequences|  [voxels] [mm)] [Hz]

EMC 3 2 192x246x117(1.14x0.59x1.19 6 Philips iU22 | X6-1

ICR 1 1 480x120x120|0.31x0.51x0.67 24 Siemens SC2000| 4Z1c

SMT 4 5 227x227%229(0.70x0.70x0.70 8 GE E9 4V-D

summary of the data is shown in Table 1. The data was divided into a training set
of 8 4D sequences and a test set of 8 4D sequences. For tuning the algorithm, an-
notations (i.e. landmarks) across multiple frames per 4D sequence were provided
for the training set. For the test set, one or more annotations in the first frame
were provided. These annotated landmarks were tracked over time. The tracking
performance of the test set was evaluated by the organizers of the challenge. The
Euclidean distance between the tracked points and manual annotations was cal-
culated. The error was summarized by the following statistics: mean, standard
deviation, 95 percentile, minimum and maximum distances.

MeVisLab, OpenCL and C++ are used for software development. The OpenCL
code was run on a NVIDIA GTX 780 Ti GPU.

Parameter setting : We used a block-size of 113 mm? for the block-matching.
The block is evenly sampled 18x18x18 times. The similarity metric used is nor-
malized cross correlation (NCC), (g4,A,05) = (0.1,0.1,0.1) is used as the out-
lier rejection parameters. These values were optimized in the previous work [3].
The number of points for the block-matching (step one and step two) of the
RTRT approach and the RTR approach are set to 100, 200 and 400 points,
respectively. The search range for the block-matching (step one and step two)
of the RTRT approach and the RTR approach is set to 40% mm?, 10> mm3
and 20% mm?, respectively. The search range (step one and step two) of the
RTRT approach and the RTR approach are evenly sampled 60x60x60 times,
15x15x15 times and 30x30x30 times, respectively. The sampling determines the
step size for the block-matching. A local point set of 1000 points is generated
using a Gaussian distribution with mean located at the anatomical landmark
and standard deviation of 10 mm. The adjacent horizontal/vertical nodes of the
grid structure used to generate the global point set are 10 mm apart, see Fig-
ure 2. The points required for the block-matching in the RTR and the RTRT
approaches are sampled from the global and the local point sets.

The training set and the test set results are presented in Table 2 and Table 3,
respectively. The mean tracking error for the training set and the test set are
3.26 4+ 2.62 mm and 1.62 4+ 0.94 mm, respectively. The average run time of the
Step 1 (RTRT) and the Step 2 (RTR) of our approach as shown in Figure 1
are 6.68 seconds and 4.18 seconds, respectively. Hence for the given parameter
settings the GPU implementation runs at 11 seconds per frame.



Table 2. Training set results

Landmarks Mean Std | 95th% | Min Max
(in mm)|(in mm)|(in mm)|(in mm)|(in mm)

EMC-01_1 0.94 0.51 1.65 0.36 1.79
EMC-02_1 1.19 0.47 1.83 0.80 2.01
EMC-02_2 2.28 1.10 3.62 1.02 3.80
EMC-02_3 2.05 0.58 2.80 1.48 2.96
EMC-02_4 1.80 0.54 2.39 1.14 2.41
EMC-03_1 5.55 2.28 8.20 1.78 8.54
EMC 3.01 2.42 7.85 0.36 8.54
ICR-01.1 1.57 0.56 2.36 0.27 2.83
SMT-01_1 2.06 0.41 2.74 1.08 2.97
SMT-01_2 3.46 0.55 4.43 2.42 4.61
SMT-01-3 3.00 0.42 3.75 1.91 3.89
SMT-02_1 1.65 1.60 2.20 0.6 16.49
SMT-02_2 1.92 0.47 2.74 0.91 3.27
SMT-02_3 3.72 0.70 4.79 2.30 5.59
SMT-03_1 2.29 0.72 3.43 1.19 3.62
SMT-03_2 2.09 0.60 3.14 0.68 3.54
SMT-04-1 8.88 3.82 15.04 0.97 15.31
SMT 3.30 2.64 9.20 0.60 16.49

Tracking Results| 3.26 | 2.62 | 855 [ 0.27 [ 16.49

Table 3. Test set results

Landmarks Mean Std | 95th% | Min Max
(in mm)|(in mm)|{(in mm)|(in mm)|(in mm)

EMC-04_1 1.10 0.63 2.28 0.26 2.31
EMC-05_1 1.79 0.36 2.16 1.15 2.17
EMC 1.45 0.61 2.18 0.26 2.31
ICR-02.1 1.65 0.37 2.14 0.80 2.15
SMT-05_1 3.39 2.53 10.13 0.90 10.24
SMT-05_2 0.97 0.36 1.58 0.21 1.91
SMT-06-1 1.56 0.37 2.11 0.57 2.49
SMT-06_2 2.01 0.52 2.77 0.99 3.69
SMT-06-3 1.37 0.35 1.95 0.43 2.18
SMT-07-1 1.83 0.42 2.49 1.02 2.92
SMT-07_2 1.79 0.39 2.46 1.04 2.69
SMT-08_1 1.48 0.41 2.26 0.22 2.44
SMT-08-2 1.09 0.29 1.52 0.37 1.77
SMT-08_3 2.10 0.73 3.37 0.87 3.91
SMT-09_1 1.10 0.35 1.70 0.14 1.89
SMT-09_2 0.96 0.38 1.66 0.10 1.87
SMT-09_3 2.25 0.60 3.16 0.18 3.73
SMT 1.63 0.94 2.86 0.10 10.24

Tracking Results| 1.62 [ 0.93 | 2.84 [ 0.10 | 10.24
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Fig. 3. Training set tracking results: Left - Reference image manual annotation, Middle
- Moving image automatic annotation, Right - Moving image manual annotation. Row
1 - For the dataset EMC-03_1 at time point 42, the tracking error is 8.54 mm; Row 2
- For the dataset SMT-04_1 at time point 76, the tracking error is 15.14 mm.

4 Discussion and conclusions

In this paper we perform the task of tracking anatomical landmarks using a
combination of previous methods by Banerjee et al. [2] and [3]. A mean tracking
error of 1.62 + 0.94 mm is achieved on the test set. In the first step, the point
set used for the global 4D tracking step is a combination of a global point set
generated from a grid structure and the local point set generated randomly in the
neighborhood of the anatomical landmark. This combination of point set ensures
a high percentage of points close to the landmark position during the global 4D
tracking step. The local point set is intended to track a specific landmark well,
whereas the global point set helps in increasing robustness in tracking. In the
second step, the local point set is again used in the local 3D registration step.
This step is designed to track the landmark in the presence of local deformations.
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Fig. 4. Tracking examples from the training set.



Fig. 5. Test set registered Volumes: Left - Reference image manual annotation, Middle
- Registration result automatic annotation, Right - Moving Image. Row 1 - dataset
EMC-04_1, time point 124; Row 2 - dataset SMT-05_1, time point 66; Row 3 - dataset
SMT-07_2, time point 74.

The mean tracking error for the training set is 3.26 £+ 2.62 mm. Two of
the datasets (EMC-03_1, SMT-04_1) from the training set have large tracking
errors, see Figure 3. In the EMC-03_1 4D US sequence the anatomical landmark
is located on a vessel which undergoes large deformations due to blood flow and
in the SMT-04_1 4D US sequence the anatomical landmark is located outside the
liver. Some of the tracking results from the training set are shown in Figure 4.
In the test set the SMT-05_1 4D sequence has large tracking error. In rest of
the dataset the tracking performance is satisfactory. Some representative test
set registration results are shown in Figure 5.

The speed depends on the number of points, search range size, number of
samples in the search range (step size), block size and number of samples in the
block. The current approach runs at 11 seconds per frame. For tracking of liver,
real-time (faster than image temporal resolution) speed is achieved by Banerjee
et al. [2] by selecting appropriate parameters for the US data acquired from
Philips iU22 machine with X6-1 probe.

To conclude, we extended our current registration approaches for 3D and 4D
US volumes such that it enables tracking of anatomical landmarks in 4D US



sequences. The method is evaluated using CLUST 2015 challenge datasets. For
a test set of eight 4D US sequences, an accuracy of 1.62 £+ 0.94 mm is achieved.
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