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Abstract. We propose a method to track tissues in long ultrasound
sequences of liver. The proposed method is based on kernelized corre-
lation filter (KCF) and we introduce two extensions to KCF; adaptive
window size selection and motion vector refinement with template match-
ing. We compare KCF and the proposed method by using some training
sequences of 2D ultrasound and the mean tracking error can be improved
with the proposed method by up to nearly 3 pixels. The tracking per-
formance is also assessed on 19 test sequences of 2D ultrasound with 62
regions of interests. Mean tracking error is 1.09 mm.
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1 Introduction

It is important to track a region of interest (ROI) to compensate motion to en-
sure accuracy of robot-assisted diagnosis [1], focused ultrasound surgery [2] and
dose delivery in radiation therapies [3]. Ultrasound is one of potential imaging
modalities for image guidance and has some advantages such as real-time imag-
ing, noninvasive and cheap comparing to other imaging modalities such as CT
and MRI.

Various methods have been proposed for tracking a moving object in a video
sequence. In recent years, tracking methods using discriminative approach have
been proposed and reported to exhibit high performance [4-6]. Especially, Ker-
nelized Correlation Filter (KCF) is known to show high performance despite its
high speed processing (7, 8].

KCF shows high tracking performance, but it has some problems such as,
(1) the user has to specify a region enclosing the target object to track, (2) KCF
emphasizes robustness than accuracy. For example, the criteria of true positive
is that the tracked position is within 20 pixels relative to the ground truth in
[7].

On the other hand, in medical applications, both robustness and accuracy
are required for tissue tracking. In this paper, we propose a tracking method of
tissues in long ultrasound sequences of liver. The proposed method is based on



2 Satoshi Kondo

KCF and we introduce two extensions to KCF. The first one is adaptive window
size selection and the second one is motion vector refinement.

2 Overview of Kernelized Correlation Filter

In this section, we briefly explain KCF, which is a basis of our proposed method.
In KCF, when a target object to track is specified, a discriminative function is
calculated by kernel ridge regression using the image inside the region of the
target to track as a positive sample and the images in the surrounding region
of the target as negative samples. Since the positive sample and the negative
samples are expressed with a circulant matrix in KCF, the regression coefficient
vector in the kernel space is obtained by using Discrete Fourier Transform (DFT),
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where y is a regression target vector, 1 for an element corresponding to a positive
sample and 0 for an element corresponding to a negative sample, x is an image
patch in a tracked region, A is a regularization weight in ridge regression, a hat "
and a star * denote the DFT of a vector and complex-conjugate, respectively. In
the case of two dimensional data and the dimension of x is M x N, the dimension
of y is also M x N. Note that the tracking window, which is the size of x, has
2.5 times the size of the target to track in the implementation of KCF.
In case of Gaussian kernel, K is
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where F~! and ® denote inverse Fourier transform and element-wise multipli-
cation, respectively.

In the detection phase, a regression function in Eq. (3) is calculated and the
position where the regression value is maximum is the tracked position.

i) = (k) o, (3)

where z is a image patch in a frame to track which has the same size with x.
Then, & is re-calculated at the new tracked position in the next frame using
Eq. (1). In the implementation, however, & is gradually updated as in Eq. (4).

Gy yq = PBoyyr + (1 - Bay, (4)

where 3 is a weight for the interpolation.

3 Proposed Method

3.1 Overview

It is desirable that a target area in the object tracking is set to enclose the target
object in the first frame by a user. However, in some cases, the user may specify
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Fig. 1. A flowchar of the proposed method.

only the center position of the target object. In such cases, the tracking system
has to decide the region of the target object to successfully track the object. Our
proposed method is based on KCF and the size of the tracking window should
be set in consideration of the following two aspects. The first one is the size of
the tracking target object and the second one is the amount of motion of the
target object.

In KCF, a discriminative function is determined using the image inside the
region of the target object as a positive sample and the image in the surrounding
region of the target object as negative samples. Therefore, it is desirable that the
image of the target object and the image in the surrounding region have different
texture. KCF calculates the correlation in the Fourier domain in the tracking
process as described in Section 2. That means the amount of the motion should
be within the area of the Fourier transform which is the same as the size of the
tracked window. Also, the ultrasound images of the liver have the characteristic
that the motion is approximately periodic which is induced by respiration.

In the proposed method, the size of the target object and the maximum
amount of motion are obtained by using initial frames during about one breath-
ing cycle (Step 1). This is a kind of calibration phase. The size of the tracking
window is decided by using the size of the target object and the maximum value
of the motion vectors (Step 2). In the subsequent frames, tracking is performed
with the tracking window (Step 3).

Fig. 1 is a flowchart of the proposed method. We will describe the details of
each process in the following sections.

3.2 Tracking using fixed window size for initial frames (Step 1)

In Step 1, tracking is performed by KCF with a predetermined size of the tracking
window at first for each frame. The predetemined window has a rectangular area
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centered at the point designated by the user to the target object. Then, in order
to improve the tracking precision, the template matching is performed for a
narrow search region around the position detected by KCF. We use normalized
cross correlation to evaluate the template matching.

Note that the learned discriminative function is gradually updated in KCF as
mentioned in Section 2. Also, we do not update the template and use the same
template for each frame in the template matching. The template is surrounding
area of the target object in the first frame. The reason is to use the template
obtained in the first frame for each frame is to avoid drift. Template matching
is performed only in the region of around + 2 pixels of the positions obtained
by KCF. When the maximum normalized correlation value is greater than a
threshold Cyj, the result of the template matching is adopted. Otherwise, the
tracking result of KCF is adopted without refinement. The area of performing
the template matching is decided empirically.

Also, we estimate the size of the target object in every predetermined frame.
Since the target object is a tissue such as blood vessels or tumors, the size of the
target object is determined by the ellipse fitting in the proposed method.

We repeat the above tracking process for each frame and analyze the temporal
history of the tracked positions. When the target object reaches the right (or
left) end two times, we determine that one respiratory cycle has been passed.
When it is determined that one respiratory cycle has been passed, the process
proceeds to Step 2.

3.3 Refinement of region size (Step 2)

In Step 2, the size of the tracking window is determined using the amount of
the motion obtained from the tracking results and the size of the target object.
The size of the tracking window is a larger value of 7; times of the maximum
value of the amount of motion between adjacent two frames and ~, times of the
median value of the object size (major axis). The values are decided for width
and height of the tracking window separately. The width and the height of the
tracking window are multiples of 8, the minimum value of the width and the
height is 16 pixels, and the maximum value is the initial tracking window size.
When there are multiple tracking targets in a sequence, the sizes of the tracking
windows are decided for each target.

3.4 Tracking using refined window size (Step 3)

In the subsequent frames, tracking with KCF and template matching is per-
formed using the tracking window size determined in Step 2. When the target
window size is changed in Step 2, & and x in KCF and the size of the template
used in the template matching should be changed. This is performed using the
template used in Step 1, which is an image patch around the target object in
the first frame. Specifically, for the template matching, the template is revised
by extracting the center area of the initial template. The updated template is
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Table 1. Tracking results for the 2D point-tracking training data. The numbers show
the tracking errors in pixels.

SequenceName KCF Proposed
Mean Maximum Mean Maximum
CIL-02 #1 3.00 6.50 2.52 5.81
ETH-05-2 #2 6.51 28.98 3.67 27.06
ICR-04 #2 2.38 8.50 1.77 6.50
MED-05-1 #1 5.93 14.64 5.30 12.71

converted to & and x for KCF. Thus, & and X is reset at the beginning of Step
3.

The subsequent process, tracking with KCF and the template matching, is
the same as in Step 1.

4 Experimental Results

We evaluated the performance of the proposed method using the 2D point-
tracking training data of liver ultrasound. The training data was provided by
organizers of CLUST 2015, MICCAI Challenge on Liver Ultrasound Tracking.

Our implementation is based on the open source MATLAB code (version
2) at http://home.isr.uc.pt/~henriques/circulant/. In the experiment, we used
the following values for parameters. The feature is gray scale pixel value. Note
that we compared the tracking performance with gray scale feature and His-
togram Oriented Gradient (HOG) feature [9] as a preliminary experiment and
the gray scale feature showed better performance for liver ultrasound sequences,
while HOG feature shows much better performance than gray scale feature for
surveillance and sport videos in [7]. The kernel type in KCF is Gaussian kernel
with ¢ = 0.2. We selected a Gaussian kernel based on preliminary experimental
results. A in Eq. (4) is 107%. 8 in Eq. (4) is 0.0075, which is one tenth of the
default parameter in case the feature vector is the gray scale feature in KCF.
The initial tracking window and template size and the threshold Cj, are 96x96
pixels and 0.8, respectively. The object size is estimated every 5 frames in Step
1. In Step 2, 71 and 75 in step 2 are 8 and 4, respectively. These values were
decided empirically. We used the same parameters for all the sequences.

We compared the tracking performance of the proposed method with KCF
in which the tracking window size is fixed at 96x96 pixels. Table 1 shows the
results for some the 2D point-tracking training sequences. In Table 1, mean and
maximum tracking errors are shown for KCF and the proposed method. Note
that the ground truth is not given for all frames for the training sequences and
the errors are calculated only for the frames the ground truth is given.

As can be seen in Table 1, the proposed method shows better tracking per-
formance comparing to the original KCF. The proposed method can improve
the mean errors by up to nearly 3 pixels and the maximum errors by nearly up
to 2 pixels.
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Table 2. Tracking results for the 2D point-tracking test data. The numbers show the
tracking errors in millimeters.

SequenceName | Mean | Standard deviation | 95th percentile | Minimum | Maximum
CIL 2.21 1.82 6.00 0.10 8.05
ETH 0.83 0.77 2.55 0.01 10.94
ICR 0.90 0.64 1.99 0.01 7.80
MED1 1.64 2.27 5.47 0.02 17.29
MED2 1.37 1.19 4.26 0.01 7.64
All 1.09 1.35 3.07 0.01 17.29

The tracking results for each sequence group (CIL, ETH, ICR, MED1 and
MED?2) in the test dataset are shown in Table 2.

As for computational time, we measured the processing time using a com-
puter with an Intel Core i7 3.3 GHz CPU (6 cores) and 64 GB memory. We im-
plemented the proposed method with MATLAB. The average processing time
per target object and per frame in Step 1 and Step 3 for each sequence in the
proposed method was from 106 to 155 msec and from 75 to 120 msec, respec-
tively. For comparision, The average processing time per target object and per
frame for each sequence in the original KCF was from 23 to 58 msec. The av-
erage additional time in the proposed method comparing to the original KCF
was 59 msec per target object and per frame. We think the processing time can
be improved if we implement the template matching in the proposed method by
C++, and it’s a future item.

5 Conclusion

In this paper, we proposed a tracking method of target tissues in long ultrasound
sequences of liver. The proposed method is based on kernelized correlation fil-
ter (KCF) and we introduce two extensions to KCF for improving the tracking
accuracy. The experimental results showed the proposed method had better ac-
curacy comparing to the original KCF. Mean tracking error with the proposed
method for test sequences of 2D ultrasound was 1.09 mm.

Items for future research are to improve the accuracy of tracking tissues near
the boarder and expand the proposed method to 3D ultrasound.
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