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tracking solutions at high frame rates at the cost of reduced image quality and
a smaller field of view. Additionally ultrasound imaging allows isotropic image
resolution in 3D and does not suffer from intra-frame motion.

Development of fast tracking methods on continuous ultrasound imaging is
currently subject of research. State-of the-art methods for motion estimation
in 2D and 3D suggest ultrasonic speckle tracking [4], or rigid [5] and non-rigid
registration [6]. More sophisticated approaches make use of statistically validated
motion models [7] [8] or combine scale-adaptive block-matching algorithms with
learning-based techniques [9].

To achieve on-line motion compensation, it is necessary that the methods
work in real-time, i.e. faster than the incoming imaging frame rate. Additionally,
it is necessary for some setups to compensate for latencies that might occur dur-
ing ultrasound image streaming [10] [11] and mechanical latencies [12] [13] (pages
1 to 4). For this reason, it will be useful to combine the tracking method with
additional prediction algorithms to obtain a glimpse into the near future.

In this paper we present two algorithms for fast and robust tracking, one of
them capable to cope with frame rates of up to 25 Hz, and combine the tracking
results with a prediction method that allows a prediction horizon of 200 ms.
Additionally, we introduce a real-time capable smoothing of the tracked point’s
trajectory using polynomial fitting, which improves the prediction.

2 Methods

2.1 Datasets

The CLUST challenge provided 23 2D US sequences of the liver of volunteer
test subjects under free breathing with a duration of 120 to 580 seconds. The
sequences have a temporal resolution of 11-25 Hz and isotropic in-plane resolu-
tion of 0.35-0.71 mm. Two of the sequences come with 2 respectively 3 manually
labeled ground-truth annotations for approximately 10% of the frames as a train-
ing set. A total of 54 points had to be tracked in the test-set where only the
initial position was given.

The 3D datasets consist of 11 sequences with a duration of 5.8 to 27 seconds.
The temporal resolution varies from 6 to 24 Hz depending on the sequence. The
spatial resolution is not necessarily isotropic for all sequences and is in a range
of 0.3 mm up to 1.2 mm. 21 annotations have been provided for the first frame
as the test-set and 4 points as training data.

2.2 2D Motion Tracking using Dense Optical Flow

The first 2D motion tracking method is using a two-frame motion estimation
based on G. Farnebaeck’s polynomial expansion [14] and has originally been
adapted by us for motion tracking in MR images. We use the first frame as a
reference and apply the tracking on each subsequent frame in comparison to the
reference. The result of this operation is a dense motion vector field for the entire
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time. When plotting the trajectories over time the detected outliers appear as
sensor-clipping. By applying real-time capable polynomial fitting (1st order) to
the outlier-filtered trajectories, it is possible to compensate for the clipping. To
achieve non-linearity on a 1st order polynomial fit, the fit is done on overlapping
segments with a constant window-size (number of samples) and then averaging
the accumulated fits for each sample. Another aim of the polynomial fitting is
to provide smoother input for the prediction described in 2.5. The polynomial
fitting tends to under-estimate the motion for the true extreme values but ap-
pears to correctly over-estimate the motion for the samples where the outlier
detection causes the clipping of the trajectory component.

2.3 2D Motion Tracking on GPU

This heuristic procedure has several parameters that were tuned on the labeled
2D data provided for training. Preprocessing: the images were resized for speed
such that the width is 160 pixels. Most of the features to track were vessels
(roughly a black round area surrounded by a whiter tissue boundary), for which
we try to get automatically the cross-section radius (r), in the first image. For
cases that look differently, a default r = 5 pixels is used. The scale of the image is
increased and the estimation repeated until r ≥ 2. Each tracked point is treated
independently, possibly even using the same images resized at a different scale.
A mask is computed containing all pixels that change in a dataset, which corre-
sponds to a device-specific viewport. It can be extracted from previous sessions
and reused, or extracted from the first image automatically under mild assump-
tions. Registration: a quadratic patch with the edge size of 6r (to include the
region of interest and a local neighborhood) is then extracted from the scaled
first image and used as reference. From 3000 random patches with uniformly
random variations of size (±10%) and random skewness (0 . . . 40%), distributed
over the whole field of the current frame, the most similar is computed on GPU.
The similarity function used is the minimum of the correlation coefficients of
the entire patch and of the left/right/top/bottom parts with the corresponding
parts of the reference. A second local search is then performed. This looks for
the best variation (same ranges as above) of the patch found in the first pass,
after a reduction of the edge’s size to 80%. To avoid the flaws of this simple
similarity function, a different one is used to evaluate further the best matching
patch found - the correlation coefficient of the polar coordinates representation
of the central inscribed disc of the patch. For both similarity functions the mask
was taken into account in an attempt to improve the tracking behavior next to
the boundary of the valid area. This is achieved by ignoring the computations of
the pixels known to be outside of the valid area. Postprocessing: in our first
GPU submission we have filtered the raw position guesses produced by the GPU
registration using a simple jump detection, using as threshold 3r. For a second
GPU-based submission, we used the same input but a more refined filtering that
looked both for sudden jumps in position and for sudden variations in similar-
ity. The thresholds used were continuously automatically adjusted, assuming a
normal distribution of the frame-to-frame distances and of the matching quality

Proc. MICCAI workshop: Challenge on Liver Ultrasound Tracking

40



(thresholds set to 3 times the empirical standard variance of the populations
corresponding to frames where the tracking is believed to be good).

2.4 3D Motion Tracking

The same method as in 2.2 has been used for the 3D tracking, which is here in fact
a 2.5D approach. This was done by applying the tracking on the two orthogonal
slices that intersect at the given annotation after rotating the volumes such that
the first 2D coordinate lies in the XY-plane and the second one in the ZY-plane
(depending on the alignment of the input data). This yields two separate tracking
results per frame. As both slices share the Y-axis in 3D space, the tracking results
for this redundant axis have been averaged for both results and we use the X- and
Z-components independently as the final 3D position. As the orthogonal slices
are fixed in their Z-coordinate, the method is sensitive to out-of-plane motion
of the landmark to track. To compensate for out-of-plane motion it is necessary
to adjust the Z-coordinate for one slice according to the X-component of the
motion vector from the orthogonal plane (left as future work).

2.5 Prediction

For the 2D motion vectors, we tested a robust on-line prediction method that
we developed for respiratory motion compensation (tested previously on the
Cyberknife respiratory motion dataset3) after a preprocessing described in [13]
at page 100, set here for predicting the position of the point of interest 200 ms into
the future. As there is only one signal, like there was for the Cyberknife data, the
problem is one of pure auto-regression. The algorithm we used is a linear auto-
regression (AR). More precisely, we employed iterated stable linear regression (3
iterations, elimination of outliers at quantile 0.95). The auto-regression model
was updated once per second, using only data not older than one minute. We used
an order that corresponds to 4.5 seconds at 20 Hz sampling rate. From the history
window, the AR model was built to depend only on the values {T + dt; dt ∈
{0,−1,−2,−3,−5,−8,−13,−21,−34,−55,−89}}, a Fibonacci progression that
stops at 4.5 s into the past (for 20 Hz sampling rate) from the last known value T .
The accuracy we obtained on the Cyberknife database using the Fibonacci auto-
regression delays were comparable to the ones obtained using the full history
window, but the speed was much increased by a factor of about 10. Less training
data had to be collected, as there were less parameters to estimate, therefore the
prediction could start earlier. As the current implementation of the prediction
involves a learning phase of 30 seconds, we did not try to use this prediction for
the 3D tracking due to the insufficient length of the datasets.

2.6 Software Tools and hardware

The methods described in 2.2 were implemented using the Mevislab software,
Python, OpenCV and Numpy. The actual tracking and timing measurement has

3
available at http://signals.rob.uni-luebeck.de/index.php/Signals @ ROB, by courtesy of Dr.
Kevin Cleary and Dr. Sonja Dieterich
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been executed on a Intel Core i7-4770k with 32 GB RAM. The GPU method has
been implemented in Matlab (CPU Intel Xeon E5540, 24 GB RAM) and CUDA
(GPU Nvidia Geforce GTS 450).

3 Results

Tracking Results from Dense Optical Flow: given the fact that focused
ultrasound treatment usually involves ablation of a safety margin around the
tumor [16], the dense optical flow tracking turned out to work with the pre-
cision required for surgery despite the reduced resolution due to down-scaling
the images. The mean tracking error (MTE) for the entire test-set of 54 points
is 1.82 ± 2.37 mm. Only 5 out of 54 points yielded poor results with a mean
error above 3 mm. The high-deviation results can be explained by out-of-plane
motion causing the tracked landmark to change its shape or if the landmark
is close to the border of the field of view in combination with high amplitude
motion. This occasionally causes the motion vectors to flip around one axis for
certain cases. The polynomial fitting has almost no impact on the overall out-
come (1.82 ± 2.34 mm) and mostly helps to marginally improve results that
already have low deviation. The average calculation time for all points is 40 ms
depending on the amount of scaling.

GPU Tracking Results: the more refined, self-tuning outliers detection
produced better results than the simple threshold detection. The mean tracking
error it produced was 1.55±2.78 mm for one 2D subset (outperforming the dense
optical flow based method) and 2.40± 2.78 mm for the second one. The average
processing time per frame was 250 ms (179 ms without using the advanced
outliers detection), conditioned by the speed of the GPU.

3D Tracking Results: as the 3D tracking is lacking a Z-coordinate ad-
justment the results are suffering from out-of-plane motion. The MTE is 5.24±
4.34 mm for all 21 points across different datasets. One data subset has a sig-
nificantly higher error of 7.61 mm. This can be explained by the lower and
anisotropic voxel-resolution. As the tracking is performed on two orthogonal
slices the average processing time per frame of 60.68 ms is slightly higher than
in the 2D datasets but still below the 3D images’ frame-rate (real-time) except
for one data subset with temporal resolution of 24 Hz.

Prediction Results: the prediction has been executed on both the polyfit-
ted and non-poly-fitted dense optical flow results, however only the prediction on
the non-polyfitted results has been submitted for evaluation. The MAE for the
prediction results is 2.04±2.36 mm. Given that polynomial fitting has no impact
on the quality of the dense optical flow tracking (see 3) it was possible to deter-
mine the difference (RMS) of the prediction on the polyfitted and non-polyfitted
results. While the prediction on the non-polyfitted tracking results reproduces
the high-frequency motion and leads to reduced precision of the prediction, the
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polynomial fitted trajectories decrease the RMS deviation for the prediction by
65 % for all points - Fig. 1(b)4.

4 Discussion and Conclusion

As the result of the Dense Optical Flow tracking is a motion vector field for the
entire image, multiple points/landmarks can be tracked in parallel without any
additional processing time. If the expected trajectory of the landmark is known
in advance, it is possible to apply the dense optical flow on a small patch of
the input image. This can significantly reduce the processing time and allows
to omit the scaling operation to preserve all details in the region of interest.
To improve the 3D tracking, it is planned to adjust the slices’ Z-coordinate
according to the orthogonal X-motion vector. As the outliers from the tracking
can be detected on-the-fly, there is a chance to improve the prediction by taking
the outlier-indicators into account to reduce the influence of those samples on
the prediction. For 2D tracking it is essential to minimize out-of-plane motion
by proper alignment of the FOV orthogonal to the dominant axis of motion.

The GPU used is more than three years old and underpowered in comparison
to the latest ones, which limited our options in compromising between the speed
and the quality of the optimization. The speed of the GPU tracking is completely
scalable and can be much higher (reaching real-time capabilities on preliminary
tests with a more modern graphic card, Quadro K5000).

We have shown in this paper the results of two tracking algorithms in combi-
nation with auto-regressive prediction. While both tracking methods work with
the precision required for surgery [16], there is a small advantage in precision
for the GPU tracking. The dense optical flow tracking has an advantage in its
capability to cope with high imaging frame rates and the additional benefit of
being able to track multiple landmarks in the same image without any additional
processing time. Even though the GPU tracking is not capable of handling the
high frame rate of US imaging, it might be useful to combine it with the dense
optical flow tracking and potentially predict intermediate positions from infre-
quent updates from both tracking methods. The runtime overhead for both the
polynomial fitting and the prediction is negligible in comparison to the pro-
cessing time for the tracking. Interestingly the polynomial fitting has significant
influence on the prediction results. As the prediction results for the polynomial
fitted tracking are almost indistinguishable from the polyfitted tracking results,
the performance of the prediction solely depends on the the quality of its input
data.
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