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Preface

Ultrasound (US) imaging is a widely used medical imaging technique. As US
has high temporal resolution and is non-invasive, it is an appealing choice
for applications which require tracking and tissue motion analysis, such as
motion compensation in image-guided intervention and therapy. Specifically,
we want to address the issue of respiratory motion in the liver.

While there is a large number of relevant works in motion tracking and
tracking of US liver images, it is hard to compare the reported tracking strate-
gies. Open datasets for designing and testing tracking algorithms are miss-
ing, and private datasets differ in size, image dimension and sequence length.
Critical are also the variation in tracking objective (full organ, anatomical
landmarks, tumor) and validation strategies.

The aim of the Challenge on Liver Ultrasound Tracking (CLUST) was
to present the current state-of-the-art in automated tracking of anatomical
landmarks in the liver and compare between different methods.

We distributed a dataset of 54 sequences of patients and volunteers under
free breathing, provided by 6 groups (see pages 61-63). The length of the
sequences ranges from 4 seconds to 10 minutes and acquisitions were done
with different US scanners and settings. The dataset is divided into three
parts, according to the image dimension and annotation type. The first
part is composed of 28 2D sequences from healthy volunteers with point-
landmark annotations. The second part contains 10 2D sequences from 5
patients with segmentation annotations. The third part consists of 16 3D
sequences with point-landmark annotations from healthy volunteers. The
data were anonymized and in the format of sequences of images (.png, .jpeg,
NIFTI) or 3D images (.mha). The data were split into a training and a test
set. Training data (10% of the sequences) and part of the test data (70%)
were available prior to the challenge. Annotations were provided for the
training set, to allow for some tuning of the tracking algorithm. For the test
set, the annotations of the first images were provided. These needed to be
tracked over time. The remaining 20% of the test data was distributed shortly
before the MICCAI conference. This helped the organizers and participants
to comment on algorithm run-time, parametrization and tuning, flexibility,
and feasibility for a real application scenario. The results for this last dataset
were not included in this proceedings book, as they were generated after the
paper submission deadline.

In response to the call for papers, we had 55 requests for access to the
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data. A total of 7 papers were accepted to the workshop. These papers un-
derwent a peer-review process, with each paper being reviewed by 2 members
of the Organizing Committee. The revised papers, incorporating the review-
ers’ comments, are included in this proceedings book. Workshop attendees
were able to present their research and exchange ideas, learn the current
state-of-the-art techniques, and gained a perspective of the challenges and
potentials of US tracking.

We would like to express our sincere appreciation to the authors whose
contributions to this proceedings book have required considerable commit-
ment of time and effort. We also thank (in alphabetical order of surnames)
Jyotirmoy Banerjee from the Biomedical Imaging Group, Erasmus MC, Rot-
terdam, The Netherlands; Frank Lindseth and Sinara Vijayan from SINTEF
Medical Technology, Trondheim, Norway; Julia Schwaab from mediri GmbH,
Heidelberg, Germany; and their colleagues for providing data and annota-
tions. Without their help this workshop would not have been possible.
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Valeria De Luca
Amalia Cifor

Muyinatu A. Lediju Bell
Christine Tanner
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Dennis Lübke, and Christian Grozea . . . . . . . . . . . . . . . . 37
MICCAI CLUST 2014 - Bayesian Real-Time Liver Feature Ul-
trasound Tracking
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Liver Feature Motion Estimation in Long High Frame 
Rate 2D Ultrasound Sequences

Tuathan O'Shea1, Jeff Bamber1 and Emma Harris1

1 Joint Department of Physics, Institute of Cancer Research & Royal Marsden NHS 
Foundation Trust, London and Sutton, UK

tuathan.oshea@icr.ac.uk

Abstract. This  study investigates  the use a 2D normalized cross-correlation 
(NCC)-based algorithm to estimate  in vivo motion of liver features in 2D B-
mode  ultrasound  (US)  images.  Datasets  included  23  volunteer  imaging 
sequences,  each  containing  first  frame  annotated  points  of  interest  (POI). 
Images had a range of spatial (0.28 – 0.71 mm) and temporal (11 – 25 Hz)  
resolution.  Image  quality  was  also  highly  variable.  A  2D  block-matching 
algorithm  was  developed  to  track  POI  motion  throughout  the  imaging 
sequence.  A  correlation  and  displacement  thresholding  tracking  approach, 
which used knowledge of previous displacement and  (1) linear extrapolation, 
(2) a regularizing sinusoidal breathing model or (3) hybrid fixed-reference / 
incremental  tracking  was  use  to  account  for  potential  tracking  errors.  The  
overall mean error in vessel tracking was 2.15  ± 2.7 mm. This approach to
motion estimation  shows promise for applications such as  radiation therapy 
tumor tracking.

1   Introduction

This  study  investigates  the  estimation  of  liver  feature  motion  in  variable  quality 
volunteer 2D ultrasound amplitude demodulated data. In conformal radiation therapy, 
some form of (intra-fraction) motion management is often required [1].  If  motion 
cannot be minimized using a method such as respiratory gating [2], then this motion 
should  be  tracked  in  as  close  to  real-time  as  possible.  Tracking  cardiac  and 
respiratory induced  motion requires  an imaging  method which  samples  the target  
position  with  an  adequate  temporal  resolution.  In  radiation  therapy,  most  current 
tracking systems are based on kV x-ray imaging [3], [4]. Ultrasound has two major  
advantages over these  methods:  (i)  it  does  not impart  ionizing radiation (imaging 
dose) and (ii) it allows the visualization of soft tissue. Correlation-based techniques 
have been used to investigate ultrasound speckle and feature-based motion tracking.  
Ultrasound  speckle  tracking  of  respiratory  induced  phantom  motion  and in  vivo 
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feature-based  tracking  has  been  studied  [5].  Good  agreement  (mean  absolute  
difference  <  2  mm)  was  found  between  tracked  and  manually  annotated 
displacements using a mechanically swept 3D probe limited to a 0.5 Hz imaging rate.  
Lediju Bell et al. [6] used a 2D matrix array transducer to acquire in vivo liver motion 
data from three volunteers at imaging rates of up to 48 Hz. In the study, volumetric 
data was acquired at  high imaging rates  without  the restriction of a mechanically 
swept  ultrasound transducer.  It  was  found that  volume rates  of  8  to  12 Hz were 
required to track cardiac and respiratory induced liver motion. In many instances out-
of-plane  motion  is  small  and  2D  imaging  is  a  valid  approach  to  tissue  motion 
estimation. De Luca et al. [7] presented a scale adaptive block-matching approach to 
liver vessel tracking in long 2D ultrasound sequences. The method achieved a mean 
tracking accuracy of < 1 mm. 

(a)  (b)

Fig.  1. Ultrasound  B-mode  data  for  one  of  the  volunteers  to  illustrate  image  quality  and 
method employed to track liver features. The first frame and annotated points of interest (POI)  
are shown (a). A region of interest (ROI) is defined around each POI. A correlation-based  
block matching algorithm was used to locate this same POI, within a larger search region, in a 
subsequent ultrasound frame (b).

In the current study we employ a 2D correlation-based block-matching algorithm 
to  track  features  (blood  vessels  center-of-mass)  in  2D B-mode  ultrasound  image 
sequences (from 23 volunteers). The tracking code was applied to ultrasound data 
from three different scanners  / transducers with a range of image resolutions.  We 
investigated  non-incremental  (fixed  reference)  tracking.  For  non-incremental 
tracking, the mean inter-frame displacement is greater than for incremental tracking 
and there  is  a  higher  probability  of  tissue deformation and rotation  [4],  however, 
incremental tracking can be prone to drift error accumulation. In speckle tracking, it  
is known that tissue deformation and rotation corrupt the speckle pattern [8]. Low 
imaging rates have limited speckle-tracking accuracy to the extent that adequate  in  
vivo motion estimation has been obtained by tracking features (blood vessels) only  
[5]. In the current study, data was acquired at high frame rates (11 – 25 Hz) such that  
inter-frame rotation and deformation is expected to be small  and, additionally,  we 
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tracked tissue features which were generally highly visible throughout the imaging 
sequence.  Nevertheless,  in  2D  images  out-of-plane  motion  can  be  an  issue.  The 
tracking  performance  of  our  2D  correlation-based  automated  tracking  code  was 
quantified by comparison with manual annotations of the tissue features throughout 
the ultrasound sequence.

2   Materials and method

2.1   Ultrasound data

B-mode ultrasound data was provided by the CLUST 2014 (“MICCAI Challenge on  
Liver  Ultrasound Tracking”) [9].  2D volunteer  liver  image data  from 23 patients 
(MED and ETH datasets) was acquired by one of three ultrasound systems (Siemens 
Antares, DiPhAs Fraunhofer and Zonare z.one). Data had varying spatial (0.28 – 0.71 
mm) and temporal resolution (11 – 25 Hz) and sequences lasted from 121.2 – 580.64 
s. Examples of the volunteer image data from the Siemens Antares are shown (Fig. 
1). Some of the B-mode data contained what appeared to be electronic interference  
(Fig. 1 (a)) and large shadowing artifacts (Fig. 1 (a) and (b), from ETH-05 dataset). 
Two of the 23 volunteer datasets (MED-04 and ETH-05) were provided with ground 
truth annotations (of liver blood vessels) throughout the acquisition sequence which 
were  used  to  assess  tracking  code  performance  and  enable  code  development. 
Annotations  were  provided  in  the  following form:  frame  number,  x-pixel  (lateral 
position)  and  y-pixel  (axial  position).  For  the  remaining  datasets,  liver  features  
(blood  vessels  centers)  were  annotated  in  the  first  frame  only.  The  number  of 
annotations per image sequence ranged from one to five liver features (cf. Table. 1).

2.2   Tracking code

To detect  the  motion  of  liver  blood  vessels  center-of-mass  an  automated  (serial) 
tracking code was developed in MATLAB R2011b (MathWorks,  Inc. MA, USA).  
The code was based on the use of normalized cross-correlation (NCC) as a similarity 
metric between the current and a reference ultrasound frame. A reference region of 
interest (ROI) was defined around each annotation or point-of-interest (POI) in the 
first ultrasound frame. In subsequent ultrasound frames a larger search region was 
defined.  The  position  of  maximum  correlation  from  the  NCC  code  was  used  to  
identify the new position of the the  ROI. To improve the precision of coarse pixel 
displacement estimates, the sub-pixel (fine) displacement was calculated by fitting 
the maximum correlation and two surrounding values in the correlation matrix with a 
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second  order  function  and  finding  the  peak  (i.e.  when  the  slope,  m ==  0).  The 
tracking code output tracking results in the format: frame number, x-subpixel (lateral  
position) and y-subpixel (axial position). 

To track annotated POI motion three tracking methods were developed and each 
was used to track features in a subset of the US sequences: (1) a simple correlation  
and  displacement  thresholding  (fixed-reference)  tracking  approach,  which  used 
knowledge of previous displacement and linear extrapolation [10], (2) a regularized 
model-based tracking code using a sinusoidal breathing model (which was applied to 
two of the US sequences to investigate improvements in tracking results) and (3) a 
hybrid fixed reference / incremental (updated ROI) tracking approach (further details 
below). We visually assessed which US sequences were best suited to which method  
by plotting (overlaying) the raw displacement tracking code output (vessel center-of-
mass) on the current ultrasound frame in “real-time”. In this way, tracking errors due 
to, for example false matches within the search area, became obvious. The tracking 
method which gave the best (visually assessed) results for a particular US sequence  
was then selected.

For method (1), above, the code monitored the inter-frame displacement (mdisp) 
and  correlation  (mcorr)  (via  user-specified  thresholds)  and  limited  the  maximum 
displacement.  In  cases  when  the  inter-frame  displacement  was  larger  (and  mcorr 
smaller) than the threshold values, the current displacement estimate was replaced 
with  displacement  predicted  by  linear  extrapolation  using  the  previous  two 
displacement estimates.

For method (2), a model-based (predictive) regularization scheme was developed 
and used to track feature motion in two of the volunteer image sequences (5 and 14).  
After a user-specified period of time (number of frames), t, the tracking code fit the 
previous t seconds of raw motion estimation data (median filtered, n = 3) with a well  
known  respiratory  motion  model  [11]  and  this  was  used  to  infer  the  current  
displacement  of  the  feature  (ROI).  During  time periods  which  exhibited  potential 
tracking errors (as monitored by mcorr and mdisp), the model-predicted displacement 
could be used to infer the new position of the ROI.

 For  US  sequences  18  –  23,  out-of-plane  motion,  rotation  and  deformation 
changed the images to such an extent that standard fixed-reference tracking was not  
feasible.  Instead  the  code  monitored  the  correlation  (mcorr)  and  displacement 
(mdisp) value and used linear extrapolation to calculate displacement and update the 
reference region (ROI) if the values were below the user-defined thresholds (method 
(3)).

2.3   Analysis

The tracking code was developed and used to track motion of first frame annotated 
features  (POI)  in  twenty-three  volunteer  image  sequences.  Automated  tracking 
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results  were  evaluated  by  comparison  with  manual  annotations  of  liver  feature 
(vessels)  throughout  each  image  sequence  which  were  provided  after  automated 
tracking  was  complete.  Tracking  accuracy  was  evaluated  using  the  Euclidean 
distance  between  tracked  points  and  manually  annotated  points  which  was 
summarized by the mean and standard deviation. The run-time performance of the 
tracking code was also evaluated by calculating the average run-time for all cases.

Table 1. Volunteer B-mode data sequence spatial and temporal resolution, number of points-
of-interest (POI) and error (mean  ± standard deviation) in tracking code motion estimation
(as  quantified relative to  manual  annotations of liver  feature motion).  Listed  for  POI with 
maximum (mean  ± standard deviation)  error for that specific volunteer data-set only (POI
listed in brackets). Patients with annotations available throughout the imaging sequence are 
highlighted in bold

Sequence
number

Name Im. Res. 
[mm]

Imaging 
rate [Hz]

No. of 
POI

Tracking 
method

Track. Error 
mean ±  SD 

[mm]
1 ETH-01 0.71 25 1 (i) 1.9 ± 0.4 (1)
2 ETH-02 0.40 16 1 (i) 0.5 ± 0.2 (1)
3 ETH-03 0.36 17 3 (i) 1.6 ± 1.0 (1)
4 ETH-04 0.42 15 1 (i) 0.9 ± 1.0 (1)
5 ETH-05 0.40 15 2 (ii) 1.1 ± 1.1 (1)
6 ETH-06 0.37 17 2 (i) 0.6 ± 0.3 (2)
7 ETH-07 0.28 14 1 (i) 0.7 ± 0.3 (2)
8 ETH-08 0.36 17 2 (i)  0.9 ± 0.4 (2)
9 ETH-09 0.40 16 2 (i) 0.8 ± 0.6 (2)
10 ETH-10 0.40 15 4 (i) 1.2 ± 1.5 (3)
11 MED-01 0.41 20 3 (i) 1.8 ± 0.6 (3)
12 MED-02 0.41 20 3 (i) 1.8 ± 1.8 (2)
13 MED-03 0.41 20 4 (i) 2.3 ± 1.3 (2)
14 MED-04 0.41 20 3 (ii) 3.3 ± 1.7 (3)
15 MED-05 0.41 20 3 (i) 2.3 ± 1.3 (2)
16 MED-06 0.41 20 3 (i) 6.3 ± 7.5 (3)
17 MED-07 0.41 20 3 (i) 5.3 ± 4.2 (1)
18 MED-08 0.41 20 2 (iii) 4.9 ± 3.5 (2)
19 MED-09 0.41 20 5 (iii) 11.7 ± 5.6 (5)
20 MED-10 0.41 20 4 (iii) 6.6 ± 3.9 (1)
21 MED-13 0.35 11 3 (iii) 4.4 ± 1.4 (3)
22 MED-14 0.35 11 3 (iii) 3.4 ± 2.0 (3)
23 MED-15 0.35 11 1 (iii) 2.4 ± 1.4 (1)
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3   Results and discussion

The  accuracy  with  which  the  automated  tracking  code  could  track  multiple  liver 
features in the 23 volunteer B-mode imaging sequences is summarized in the final 
column of table  1 (the  values  for  the POI exhibiting  the  largest  tracking error  is 
listed). The lowest motion estimation error (0.5  ± 0.2 mm) was for an ultrasound
sequence  containing  a  relatively  large,  single  centrally  located  blood  vessel.  For  
many of the ultrasound sequences, there was relatively small out-of-plane motion or  
deformation  of  the  tracked  features  and  therefore  a  fixed-reference  NCC-based 
approach was adequate.  However,  on occasions the tracking code detected a false  
match within the search region, for example the hyperechogenic blood vessel wall 
would disappear (out-of-plane) leaving only the hypoechogenic vessel centre (blood) 
and the NCC code would “find” another hyperechogenic feature (i.e. generate a false 
match)  within  the  search  region.  When  the  correlation  value  (inter-frame 
displacement) for a POI decreased (increased) below a user-defined threshold (e.g, 
the  current  NCC  value  was   <  0.8,  inter-frame  displacement  <  3  mm),  linear  
extrapolation was used to account for the vessel displacement in the time interval. 
While  linear  extrapolation  may  not  be  the  most  accurate  method  [9],  it  appears  
adequate in cases when there are no times of sustained tracking errors and at the high 
frame rates of these data sets.

Fig.  2. Example  of  fixed-reference  tracking  code  raw motion  estimation  (solid  blue  line) 
exhibiting  some  obvious  tracking  errors  (false  matches)  and  application  of  model-based 
regularization to improve motion estimation results (dashed green line)

For  data  sequences  5  and  14,  a  fixed  reference  sinusoid  model-based  tracking 
approach was adopted. The model was used to fit the last t seconds of ultrasound data 
to attempt to improve tracking results (Figure 2). We used a value of t = 5 s which is 
the  approximate  average  breathing  period  of  most  patients/volunteers.  The model 
was found to work well for relatively regular breathing motion (i.e. sequences 5 and 
14) and could  detect  large  tracking  errors  (“false  matches”)  in  drifting  breathing
signals. However, when the algorithm was applied to US sequences which exhibited 
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The  tracking  code  model  could  also  be  extended  to  allow  future  prediction  and 
account  for  tracking  algorithm  latencies  should  this  be  a  significant  issue  for 
radiation dose delivery.
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Liver Ultrasound Tracking Using Long-term and
Short-term Template Matching

Satoshi Kondo

Konica Minolta Inc., Osaka, Japan,
satoshi.kondo@konicaminolta.com

Abstract. We propose a method to track tissues in long ultrasound se-
quences of liver. The proposed method is based on template matching
and uses multiple templates called long-term template and short-term
template. A template to track the target tissue is adaptively selected
from the long-term template and the short-term template. The tracking
performance is assessed on 21 sequences of 2D ultrasound with 54 re-
gions of interests. Mean tracking error is 1.71 mm. We also confirm that
tracking can be performed in about 84 msec per frame using a personal
computer.

Keywords: Ultrasound, Liver, Tracking, Template matching, Multiple
templates

1 Introduction

It is important to track a region of interest (ROI) to compensate motion to en-
sure accuracy of robot-assisted diagnosis [1], focused ultrasound surgery [2] and
dose delivery in radiation therapies [3]. Ultrasound is one of potential imaging
modalities for image guidance and has some advantages such as real-time imag-
ing, noninvasive and cheap comparing to other imaging modalities such as CT
and MRI.

Various methods have been proposed for tracking a moving object in a video
sequence. Template matching is widely used because it is relatively simple and
gives high performance. Template matching is also used for ultrasound video
sequences. One of the important items to design template matching is a method
for selecting templates. There are two major methods for selecting templates.
One is to use a surrounding area of a tissue specified at the first frame as a
template and the template is never updated until the end of the sequence [5].
And the other is to use a tracked region at the most recent frame as a template
and the template is updated at every frame [6]. The former has a disadvantage
that tracking fails when the shape of the tracking target changes. The latter can
overcome the problem of the former, it has a disadvantage that small tracking
errors are accumulated. Fig. 1 shows examples of a target vessel in ultrasound
images. As can be seen in Fig. 1, Fig. 1(b) is better than Fig. 1(a) to be used
as a template when template matching is performed for Fig. 1(c). A method to
solve these problems has been proposed in [7] and the method adaptively selects
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(a) (b) (c)

Fig. 1. Examples of ultrasound images in a sequence. These images show the target
vessel in different frames. (a) 1st frame. (b) 37th frame. (c) 38th frame.

a template from the first frame or the most recent frame. Moreover, the idea in
[7] is applied to ultrasound liver tracking in [8].

While it is possible to perform template matching with high correlation when
the template is selected from the most recent frame, it still has a drift problem
if it cannot estimate the motion in high accuracy, i.e. sub-pixel order.

In this paper, we propose a tracking method of tissues in long ultrasound
sequences of liver. In the proposed method, we pay attention to the following
characteristics that liver ultrasound video sequences have: 1) Each region of
interest moves to almost same direction, and 2) Motion of each region has a
high periodicity. Under these observation, we adopt the following methods in
the proposed method. 1) We estimate a global motion for the whole frame and
utilize the estimated global motion for estimating motion of each ROI. 2) To
avoid drift, templates obtained at the first frame are used preferentially. 3) To
track ROI even when texture and shape of the ROI are changed from the first
frame, we select additional templates from past neighborhood frames. 4) Search
ranges of template matching changes adaptively depending on the motion of the
past frames.

Though the proposed method is the same as the methods proposed in [7]
and [8] in terms of using a plurality of templates selected from both the first
frame and the most recent frame, we propose a method to select a template
from a plurality of recent frames by paying attention to the characteristic that
the movement of the liver tissue by breathing is periodic.

2 Proposed Method

2.1 Overview

Fig. 2 is an overview of the procedure of our proposed method and Fig. 3 is
a schematic diagram of the proposed method. Our proposed method is based
on template matching. We use multiple templates called long-term and short-
term templates. We will describe the details about each process in the following
sections.
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Fig. 4. An example of a set of a global template and long-term templates. The red
rectangle shows a global template and the green rectangles show long-term templates.

we stop increasing the size of the ROI and the ROI is the long-term template.
We denote a set of pixel coordinates included in the long-term template for m-th
annotation as BL,m.

A global template is intended to be used to determine a motion of the entire
frame. The proposed method extracts a large rectangular area as much as pos-
sible in the ultrasound image area by excluding low brightness (shadow) area at
the first frame. In the case the long-term template ROIs at the first frame are
not included in the global template ROI, we expand the region to include the
long-term template ROIs. We denote a set of pixel coordinates included in the
global template as BG.

The global template and the long-term templates are never updated after
those are set at the first frame, i.e. all subsequent frames use the same global
template TG(x) and long-term templates TL,m(x), selected at the first frame, for
template matching.

Fig. 4 shows an example of a set of a global template and long-term templates.
The red rectangle shows a global template and the green rectangles show long-
term templates.

2.3 Global motion estimation (Step 2)

Global motion estimation is performed at each of the second and subsequent
frames. Template matching is performed using the global template TG(x). The
template matching is evaluated based on normalized cross correlation (NCC).
The displacement giving the maximum NCC, which is found by exhausted
search, is the tracked position pG,n by the global motion estimation as Eq. (1),
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pG,n = arg max
p

∑
x∈BG

TG(x) · In(x+ p)√ ∑
x∈BG

TG(x)
2 ·

∑
x∈BG

In(x+ p)2
. (1)

2.4 Long-term motion estimation (Step 3)

Long-term motion estimation is executed for each tracker (ROI). The long-term
motion estimation is performed using a long-term template TL,m which is ob-
tained at the first frame as in Eq. (2),

pL,n,m = arg max
p∈SL

∑
x∈BL,m

TL,m(x) · In(x+ p)√ ∑
x∈BL,m

TL,m(x)2 ·
∑

x∈BL,m

In(x+ p)2
, (2)

where SL is a set of pixel coordinates in the search area for the long-term motion
estimation.

The search range SL depends on the results of the global motion estimation
in Step 2. When the maximum NCC value of the global motion estimation is
higher than a threshold ThNCC,G, the long-term motion estimation is performed
in the vicinity of pG,n. Otherwise, we use a default value of the search range for
the motion estimation Sd. The tracked position pL,n,m and the maximum NCC
value NCCL,n,m are stored in the short-term buffer shown in Fig. 3.

2.5 Short-term motion estimation (Step 4)

Short-term motion estimation is performed using short-term templates. Short-
term templates are selected from images of the long-term tracked positions until
the most recent frame. Here, we use the tracking results with the long-term
motion estimation to select short-term templates and the tracking results with
the short-term motion estimation are not used at the subsequent frames to avoid
drift.

We estimate a cycle of motion from the past tracking results. Fig. 5 shows
an example of temporal changes of tracked positions from 300th frame to 500th
frame in a ultrasound video sequence. As can be seen in Fig. 5, motions of tissue
in liver have periodicity. Two short-term templates for n-th frame are selected
from the frames during the recent cycles. Suppose the cycle of the motion is Lc,
one short-term template is selected from (n − Lc)th frame to (n − 1)th frame
(period #1 in Fig. 5) and the ROI with the maximum NCCL,n,m is selected
as the first short-term template. Another short-term template is selected from
(n − Lc/2 × 3)th frame (n − Lc/2)th frame (period #2 in Fig. 5) and the ROI
with the closest position to the tracked position at (n − 1)th frame is selected
as the second short-term template.
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4 Conclusion

In this paper, we proposed a tracking method of target tissues in long ultrasound
sequences of liver. The proposed method uses multiple templates, i.e. long-term
and short-term templates. The experimental results using 21 sequences of 2D
ultrasound showed the proposed method had good accuracy. We also confirmed
that tracking can be performed in about 84 msec per frame using a personal
computer.

Items for future research are to improve the accuracy of tracking tissues near
the boarder and small tissues, improve the processing speed by optimizing the
motion estimation processing, and expand the proposed method to 3D ultra-
sound.
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Abstract. Objective: Object tracking in 2D ultrasound sequences of
liver to infer real-time respiratory organ movement and offer motion
compensation in image-guided abdominal interventions.

Methods: A kernel-based tracking algorithm that is adaptive to scale and
orientation changes of the tracking target is applied to 54 vessel targets in
21 ultrasound sequences acquired from volunteers under free breathing.
Tracking performance is evaluated based on manually annotated ground
truth information.

Results: Tracking results show that the algorithm is able to track the
assessed targets in a precise and robust manner in real-time performance.
The overall mean tracking error is 1.43 ± 1.22 mm.

1 Introduction

Object tracking in ultrasound (US) sequences of liver under respiratory motion is
a challenging task with several applications in, for instance, motion compensation
in abdominal interventions like needle biopsies, radio frequency ablations, and
radiation therapy.

In this work, we present the application of a scale and orientation adaptive
mean shift procedure to track vessel targets in long 2D US sequences acquired
under free breathing.3

The mean shift procedure was first introduced by Fukunaga et al. [6] for data
clustering. Cheng et al. [1] and Comaniciu et al. [3] later applied it to the task
of visual object tracking. Recently, Ning et al. proposed modifications to make
the mean shift tracker adaptive to orientation and scale [8]. In medical image
processing, the mean shift algorithm was used for vessel segmentation in CT
data [10] and for blood cell segmentation in images of blood smear [2]. In regard
to tracking in US sequences, the mean shift was employed to myocardial border
tracking [5]. An application to vessel tracking in US series of liver has, to our
knowledge, not been presented before.

3 The US image data was obtained from the ”CLUST 2014 MICCAI Challenge on
Liver Ultrasound Tracking” (http://clust14.ethz.ch/).
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2 Methods

2.1 Kernel Density Estimation and the Mean Shift

Given a set of samples assumed to be drawn from some probability distribution,
kernel density estimation (KDE) is a method to obtain a non-parametric esti-
mate of the underlying probability density function. The kernel density estimator
f̂h(x) at location x ∈ RD of a function f is

f̂h(x) =
1

NhD

N∑
i=1

K

(
x− xi
h

)
, (1)

where N is the number of samples xi ∈ RD within the kernel K with window size
h. Using the kernel profile k of the radially symmetric kernel K which satisfies
K(x) = ckk(||x||2) (ck is a normalization factor), Eq. (1) can be rewritten into

f̂h(x) =
ck
NhD

N∑
i=1

k

(∥∥∥∥x− xih

∥∥∥∥2
)
. (2)

The output of KDE is a function that is a smoothed representation of the given
sample distribution and can intuitively be understood as a generalization of
weighted histograms.

To find modes in a given KDE, mean shift procedures can be applied [3,6].
The mean shift is a gradient ascent on the gradient of the density estimate

∇f̂h(x) = 2
ck

NhD+2

N∑
i=1

(x− xi)k′
(∥∥∥∥x− xih

∥∥∥∥2
)
, (3)

g(x)=−k′(x)
= 2

ck
NhD+2

N∑
i=1

xig

(∥∥∥∥x− xih

∥∥∥∥2
)
− 2

ck
NhD+2

N∑
i=1

xg

(∥∥∥∥x− xih

∥∥∥∥2
)

(4)

= 2
ck

NhD+2

N∑
i=1

g

(∥∥∥∥x− xih

∥∥∥∥2
)∑N

i=1 xig
(∥∥x−xi

h

∥∥2)∑N
i=1 g

(∥∥x−xi

h

∥∥2) − x


︸ ︷︷ ︸
=mK(x)

.

(5)

The second term in Eq. (5) is also referred to as the generalized mean shift vector
mK(x). We can find modes in the gradient of the density estimate obtained
by kernel K by iteratively shifting the center of K from an initial location by
mK(x). When mode-seeking is applied to images, where pixels form a regular
grid the generalized mean shift has to be extended to introduce the notion of
pixel density. This can be achieved by employing a weighted mean shift, where
each pixel location xi is assigned a weight wi derived from, for instance, the
pixel’s intensity.
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2.2 Mean Shift for Tracking in Ultrasound Sequences

To apply the mean shift mode-seeking procedure to visual tracking, the tracking
target is selected in the first frame and represented in a suitable feature space
to obtain a model of the target. For each subsequent frame a weight image is
computed by assigning a weight to each pixel which depends on the probability
of the pixel belonging to the target. On this weight image, which is also referred
to as a target confidence map, the mean shift algorithm is initialized with the
target location in the previous frame and an appropriate kernel size. After mean
shift convergence the found mode is taken as the target location in the current
frame.

For mean shift tracking in US sequences we used normalized weighted inten-
sity histograms to represent the target model q = {qu}u=1...m and the target
candidate model p(y) = {pu}u=1...m at location y, where m is the number of
bins. The weights that determine the contributions of each pixel to a histogram
bin u are based on a radially symmetric kernel K. For the target model location
y = (0, 0) and size h = 1 is assumed by using normalized pixel locations x∗i :

qu =
1

C

N∑
i=1

k(‖x∗i ‖
2
)δ[b(x∗i )− u], (6)

where δ is the Kronecker delta function, k the kernel profile of K and b(x) a
function that maps the image intensity at location x to a bin number. C is the
sum of the kernel weights at all locations such that the sum of all qu is 1. For
the target candidate model in the current frame the same model representation
is used, but with the kernel of size h shifted to the current target location y:

pu(y) =
1

Ch

N∑
i=1

k

(∥∥∥∥y − xih

∥∥∥∥2
)
δ[b(xi)− u], (7)

where Ch is the sum of the kernel weights of all locations on the regular pixel
lattice within the kernel with window size h.

Intuitively, the histograms q and p give the probability of a pixel’s intensity
belonging to the target and the target candidate model, respectively. The kernel
assigns smaller weights to pixel locations farther away from the center. This
increases robustness since pixels closer to the center are also closer to the target
center and pixel locations close to the target center offer more reliable features
due to, for instance, changes in the appearance of the target propagating from
its boundaries towards the center.

Since the aim in the current frame is to find the target candidate model p(y)
that best matches the target model q, a similarity metric is introduced next.
We follow Comaniciu et al. [4] and use the discrete Bhattacharyya coefficient [7]
ρ(y) to compare the target model q and the candidate model p(y) at location y:

ρ(y) = ρ [p(y), q] =
m∑
u=1

√
pu(y)qu. (8)
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Intuitively, the Bhattacharyya coefficient is a measure for the amount of overlap
between two sample distributions.

In each frame t, the procedure to find the location ŷ that maximizes ρ(y) is
started at location ŷ0, which in the beginning is set to the position of the target
in the previous frame ŷt−1. By linearization through a Taylor series expansion
around y0, ρ(y) can be approximated as

ρ(yo) ≈
1

2
ρ [p(y0), q] +

1

2

m∑
u=1

pu(y)

√
qu

pu(y0)
(9)

(7)
=

1

2
ρ [p(y0), q] +

1

2

m∑
u=1

1

Ch

N∑
i=1

k

(∥∥∥∥y − xih

∥∥∥∥2
)
δ[b(xi)− u]︸ ︷︷ ︸

pu(y)

√
q

p(y0)
(10)

=
1

2
ρ [p(y0), q]︸ ︷︷ ︸

independent of y

+
1

2Ch

N∑
i=1

wik

(∥∥∥∥y − xih

∥∥∥∥2
)
,︸ ︷︷ ︸

KDE obtained with kernel K at location y

(11)

where

wi =

m∑
u=1

δ [b(xi)− u]

√
qu

pu(y)
. (12)

The first term in Eq. (11) is independent of y, whereas the second term is
a KDE obtained using the kernel K at location y and weights wi, which can
be maximized using the mean shift algorithm (cf. Section 2.1). Maximizing this
KDE means maximizing the Bhattacharyya coefficient, which finally leads to the
minimization of the distance between p(y) and q.

The mean shift iteration step to move the kernel center position from ŷ0 to
the new position ŷ1 is

ŷ1 =

∑nh

i=1 xiwig

(∥∥∥ ŷ0−xi

h

∥∥∥2)
∑nh

i=1 wig

(∥∥∥ ŷ0−xi

h

∥∥∥2) . (13)

A favorable choice for the kernel K is the Epanechnikov kernel

KE(x) =

{
1
2
D+2
cD

(1− ‖x‖2) if ‖x‖ < 1

0 else
, (14)

where x ∈ RD and cD is the volume of the D−dimensional unit sphere. The
Epanechnikov kernel minimizes the mean integrated squared error between the
KDE and the true density [9] and, since the profile kE of KE is half-triangular
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we see that g(x) = −k′E(x) = 1. Thus, Eq. (13) can be reduced to

ŷ1 =

∑nh

i=1 xiwi∑nh

i=1 wi
. (15)

After each mean shift iteration, convergence is checked based on maximum
number of iterations and minimum length of the mean shift vector. In case of
convergence ŷt is set to ŷ1, otherwise ŷ0 is set to ŷ1 and the mean shift procedure
is repeated.

2.3 Scale and Orientation Adaptive Mean Shift Tracking

In the original mean shift tracking algorithm the kernel window size and orien-
tation remains fixed. This is unfavorable when tracking a target that changes its
size and orientation over the course of the image sequence. We follow modifica-
tions proposed by Ning et al. [8] to make the procedure adaptive to scale and
orientation. To this end, first the target’s scale is estimated, which is the area
in the target search region occupied by the target. The estimated area is then
used to adjust an ellipsoid target descriptor to match the current width, height,
and orientation of the tracking target.

Estimating the Target’s Scale In each frame t the kernel center position is
initialized with the target’s position in the previous frame ŷt−1. Also the kernel
is slightly enlarged by a factor ∆d, enabling the algorithm to capture a tracking
target that increased in size since the last frame. Since the weight wi for each
pixel within the increased search region (cf. Eq. (12)) gives the likelihood of the
pixel being part of the target, the sum of all weights (i.e. the 0th order image
moment of the search region in the weight image or target confidence map)

M00 =
∑N
i=1 wi is a good initial approximation of the area of the search region

covered by the tracking target. However, if background features are present in
the target search region, the weights of pixels within the search region that
belong to the target are amplified. This is because the probability of target
features in the target search area is decreased in the presence of background
pixels, which, as per Eq. (12) (the target candidate intensity distribution p(y)
is in the denominator), increases the weights of target pixels. Therefore, the 0th

order moment overestimates the size of the tracking target in case background
features are present.

On the other hand, the Bhattacharyya coefficient between the target model
q and the target candidate model p(y) is a measure for how many target and
background features are in the current search region. Therefore Ning et al. [8]
proposed to use the Bhattacharyya coefficient to adjust the 0th order moment
approximation for the target scale. The estimated area is computed as

Â = exp
( ρ
σ

)
M00, (16)
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where σ is a parameter that governs the magnitude of adjustment of the M00 es-
timate given a certain Bhattacharyya value. In the experiments described below
σ was empirically set to 0.2.

Estimating the Target’s Orientation For estimating the target’s orientation
an ellipsoid image descriptor (cf. Fig. 1) is introduced which is defined by a
covariance matrix based on the first and second order central image moments

Cov =

(
µ′20 µ

′
11

µ′11 µ
′
02

)
, with µ′pq =

∑N
i=1(xi,1 − x̄1)p(xi,2 − x̄2)qwi∑N

i=1 wi
, (17)

where (x̄1, x̄2) is the kernel center position. An orthogonal decomposition of Cov

Cov = U × S × UT =

[
u11 u12
u21 u22

]
×
[
λ21 0
0 λ22

]
×
[
u11 u12
u21 u22

]T
(18)

yields the semi-major axis a and semi-minor axis b of the target descriptor as
column vectors in U and the aspect ratio a

b = λ1

λ2
through the singular values

in S. Subsequently, a scaling factor k can be introduced such that a = kλ1 and
b = kλ2. Using the previously estimated target area Â (cf. Section 2.3) and the
general area formula for an ellipse, we can further derive

Â = πab = π(kλ1)(kλ2) =⇒ k =

√
Â

πλ1λ2
, (19)

which finally allows us to adjust the ellipsoid descriptor based on the estimated
target scale:

Cov = U × S × UT =

[
u11 u12
u21 u22

]
×

[
Âλ1

πλ2
0

0 Âλ2

πλ1

]
×
[
u11 u12
u21 u22

]T
. (20)

2.4 Tracking Failure Recovery

Tracking may be lost over the course of the US sequence due to, for instance,
drastic change of appearance of the tracking target, too large target displace-
ments between frames, or erroneous estimation of the target’s scale and orienta-
tion leading to a disadvantageous search area. Based on the assumed periodicity
in the motion of liver vessels induced by respiration we integrated strategies
to detect frames in which tracking performance is problematical and to recover
from these situations. A first check is based on the analysis of the Bhattacharyya
coefficient ρ. If it drops below 0.8 we discard the found target position and in-
stead use the target position from the previous frame. Furthermore, the search
region is reset to the one set by the user in the first frame. If this check triggers
twice in two subsequent frames, the target position is reset to the centroid of
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the search area selected in the first frame. A second check is based on the anal-
ysis of the estimated target size. If the target search area in the current frame
is found to be larger than three times the initial target’s size, the search area
and its position is reset to the one set in the first frame. These failure recovery
strategies are rather crude but were found to only be triggered in rare situation
where tracking would otherwise fail completely.

3 Results

The scale and orientation adaptive mean shift procedure was applied to track 54
vessel targets in 21 2D US sequences of liver acquired from volunteers under free
breathing. In total, the sequences comprised 91619 frames. The overall mean
tracking error (MTE) was 1.43 mm with a standard deviation (SD) of 1.22
mm and 95th-percentile 3.67 mm. The minimum tracking error over all frames
and tracking targets was 0.01 mm, the maximum tracking error 16.01 mm. The
algorithm was developed in MATLAB Release 2013b, and the experiments were
conducted on a machine equipped with an Intel i5-3320M processor at 2.6 GHz
clock speed and 8 GB RAM. Tracking speed using this hardware set up was
about 20 Hz. Table 1 gives an overview of the data set and the results obtained.
Fig. 1 gives a visual impression of the tracking of three vessels in series MED-02.

Fig. 1: Ellipsoid target descriptors of three tracking targets overlaid on four
frames of the US sequence MED-02. 4

4 Conclusion

Tracking of vessel targets in 2D US series of liver under free breathing using a
scale and orientation adaptive kernel-based tracking algorithm is feasible, fast,
robust and precise. For future work the incorporation of a target descriptor that
is adaptive to the outline of the tracking target seems worthwhile. By suggestion
of one reviewer of an initial draft of this article, we will also look into making
the histogram representations adaptive to global illumination changes. The ap-
plication to native 3D US is also desirable. Furthermore, other feature spaces
for model representation could be investigated with a focus on, for instance,
gradient-based descriptors and joint-histograms. Finally, a more sophisticated
failure recovery strategy based on, for instance, a collection of keyframes or
predictive motion regularization could be advantageous.

4 Link to video: http://campar.in.tum.de/files/benz/CLUST2014/MED-02.webm
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Sequence information Results

Sequence Targets Frames Resolution Probe freq. FPS MTE SD 95% Min Max
[mm/px] [Hz] [Hz] [mm] [mm] [mm] [mm] [mm]

ETH-01 1 14 516 0.71 2.22 25 2.47 1.29 4.15 0.16 11.14
ETH-02 1 5244 0.40 2.00 16 0.60 0.38 1.26 0.04 2.64
ETH-03 3 5578 0.36 1.82 17 1.34 0.69 2.32 0.07 10.34
ETH-04 1 2620 0.40 2.22 15 1.05 0.80 2.10 0.05 7.33
ETH-06 2 5586 0.37 1.82 17 2.67 1.17 4.65 0.04 8.21
ETH-07 1 4588 0.28 2.22 14 0.85 0.54 1.95 0.01 3.21
ETH-08 2 5574 0.36 1.82 17 1.53 0.54 2.56 0.06 4.89
ETH-09 2 5247 0.40 1.82 16 0.85 0.46 1.67 0.01 5.89
ETH-10 4 4587 0.40 1.82 15 0.83 1.05 1.72 0.01 16.01

All ETH sequences 1.46 1.31 3.77 0.01 16.01

MED-01 3 2470 0.41 5.50 20 0.67 0.49 1.60 0.01 5.07
MED-02 3 2478 0.41 5.50 20 1.04 0.67 2.48 0.04 6.29
MED-03 4 2456 0.41 5.50 20 1.17 0.66 2.43 0.04 4.31
MED-05 3 2458 0.41 5.50 20 1.17 0.65 2.31 0.07 4.33
MED-06 3 2443 0.41 5.50 20 1.84 0.94 3.54 0.10 5.89
MED-07 3 2450 0.41 5.50 20 1.52 0.88 3.15 0.04 6.72
MED-08 2 2442 0.41 5.50 20 1.46 0.81 2.89 0.05 4.76
MED-09 5 2436 0.41 5.50 20 1.29 0.78 2.90 0.05 10.73
MED-10 4 2427 0.41 5.50 20 1.79 1.20 4.16 0.03 13.02
MED-13 3 3304 0.35 4.00 11 1.21 0.70 2.48 0.03 6.32
MED-14 3 3304 0.35 4.00 11 1.73 0.98 3.51 0.05 8.23
MED-15 1 3304 0.35 4.00 11 2.62 1.36 5.10 0.13 6.50

All MED sequences 1.40 1.13 3.49 0.01 13.02

All sequences 1.43 1.22 3.67 0.01 16.01

Table 1: Overview of the data set comprising 54 vessel targets in 21 US sequences.
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lars.koenig@mevis.fraunhofer.de

Abstract. We propose a novel scheme for annotation tracking in long
liver ultrasound sequences. It is based on a variational non-linear image
registration method using Normalized Gradient Fields, extended by a
moving window strategy based on registrations to the provided anno-
tation on the first frame. By this we achieve robustness against error
accumulation, while handling large deformations at the same time. The
method is evaluated on 21 datasets with up to five annotations as contri-
bution to the MICCAI CLUST14 challenge. We achieved a mean tracking
error of 1.31 mm with a standard deviation of 1.63 mm, while running
at close to real-time speed, exceeding acquisition rate in ten cases with
up to 44 frames per second on standard hardware.

Keywords: tracking, non-linear image registration, normalized gradient
fields, liver ultrasound, real-time, CLUST14

1 Introduction

Ultrasound imaging provides unbeaten acquisition speed while having low re-
quirements in component setup. This makes ultrasound a preferable choice where
real-time information about patient condition is needed, e.g. for fusion of intra-
operative ultrasound images to pre-operative CT images [9] or motion compen-
sation in image guided radiation therapy [5].

To enable fusion of real-time image sequences to planning data, often track-
ing of relevant features in ultrasound images is needed. Especially in long time
series, due to noise and breathing motion, this can be a challenging task [2].
Many different approaches to ultrasound tracking exist, ranging from optical
flow methods and speckle tracking up to different forms of image registration
[1]. In image registration, especially deformable methods are of interest, as they
provide deformation models that are able to represent non-linear deformations
in soft tissue. As ultrasound images are typically acquired at high frame-rates,
common non-linear image registration schemes are not capable of achieving real-
time performance. However, due to recent developments of highly efficient com-
putation schemes [6], even sophisticated variational methods have become an
attractive choice for real-time tracking.
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In this paper, we present a new tracking scheme based on a fast non-linear
image registration algorithm that allows real-time ultrasound tracking. The al-
gorithm does not rely on image segmentations, makes no assumptions about the
expected motion and does not require a training phase. By computing registra-
tions on moving image windows, which are related to the given annotation of
the time-series, we achieve robustness against error accumulation, while handling
large deformations at the same time. We evaluated this new scheme participating
in the MICCAI CLUST14 liver ultrasound tracking challenge.

2 Method

The proposed tracking scheme is based on a variational image registration ap-
proach [7]. It is embedded in a specialized framework allowing for processing of
image sequences and efficient compensation of breathing motion. In Section 2.1,
we first describe the non-linear registration algorithm, that is then used as a
basis for the tracking algorithm described in Section 2.2.

2.1 Image Registration

Let R : R2 → R denote the fixed reference image and T : R2 → R the moving
template image with compact support in domain Ω ⊆ R2. The goal of image
registration is to find a transformation y : Ω → R2 that encodes the spatial cor-
respondence between the two images R and T . In variational approaches, this is
modeled by an objective function J called joint energy function which typically
consists of a distance term D describing image similarity and a regularizer S
which penalizes implausible deformations [7]. Image registration then translates
to minimizing the functional

J (y) = D(R, T (y)) + αS(y). (1)

Here, the regularization parameter α enables a balance between data fit and
deformation regularity.

As image edges are prominent features in ultrasound images, we choose the
edge-based Normalized Gradient Fields (NGF) distance measure [4]

D(R, T (y)) :=

∫
Ω

1−
(
〈∇T (y(x)),∇R(x)〉η
‖∇T (y(x))‖η ‖∇R(x)‖η

)2

dx (2)

with

〈f, g〉η :=
2∑
j=1

fjgj + η2 and ‖f‖η :=
√
〈f, f〉η.

Note that ‖ · ‖η does not define a norm in the mathematical sense as ‖0‖η 6= 0
for η 6= 0. Roughly speaking, NGF measures the angle between reference and
template image intensity gradients at each point and aims for alignment of these
image gradients. The edge parameter η is introduced to suppress the influence
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of small edges e.g. caused by noise. The choice of the parameters η and α is
discussed in Section 2.4.

As we generally expect smooth deformations between the ultrasound time
frames, we select the curvature regularizer as proposed in [3] which is based on
second order derivatives. With the decomposition y(x) = x+u(x), the curvature
regularizer is given by

S(y) :=
1

2

∫
Ω

‖∆ux‖2 + ‖∆uy‖2 dx,

where ux, uy denote the components of the displacement in x- and y-direction,
respectively. The curvature regularizer penalizes the Laplacian of the displace-
ment components, thus generating very smooth deformations.

The minimization of (1) is performed following the discretize-then-optimize
paradigm [7]. In this ansatz, all components (distance measure, regularizer and
transformation) are first carefully discretized, yielding a continuous, yet finite di-
mensional optimization problem. This enables the usage of standard algorithms
from numerical optimization [8]. We employ the quasi-Newton L-BFGS opti-
mization scheme to minimize the objective function J for its speed and memory
efficiency. The implementation is based on the two-loop recursion formulation as
presented in [8]. The occurring linear equation system in each iteration step of
the Newton scheme is solved using a conjugate gradient method. Furthermore,
to avoid local minima, the iteration scheme is embedded in a multi-level ap-
proach [7], where the optimization problem is solved consecutively on coarse to
fine image resolution levels.

The evaluation of the objective function J together with its derivative is per-
formed using the algorithm presented in [6]. This approach includes an explicit
calculation rule for the derivative of J , which does not require any storage of
Jacobian matrices and allows for a full pixelwise parallel computation.

2.2 Tracking Algorithm

The non-linear registration described in Section 2.1 is embedded in a larger
framework to enable efficient usage in annotation tracking on ultrasound se-
quences. By calculating registrations of moving windows on each image of the
time series, we enable the tracking of an annotation a1 ∈ R2, given on the first
frame, over time. The proposed tracking scheme is illustrated in Figure 1.

Let Ik ∈ RM×N , k = 1, . . . , T denote the k-th frame of the ultrasound se-
quence of length T . We then define Wn(Ik) : RM×N → Rw1×w2 , n, k = 1, . . . , T
as a window of Ik with extent w1, w2 ∈ N, w1 ≤M,w2 ≤ N and center position
cn ∈ R2. Starting with the original annotation a1 ∈ R2 on I1, window W1(I1)
with center c1 = a1 is chosen. The extent w1, w2 is kept constant throughout the
algorithm and will be discussed in Section 2.4. Initially, a registration between
W1(I1) as reference and W1(I2) as template image is performed where the con-
tinuous image representation, as defined in Section 2.1, is obtained by bilinear
interpolation. Using the registration result y1, the initial annotation a1 is then
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that may themselves contain errors. However, as soon as the differences to the
first frame decrease, the original scheme takes over and possibly accumulated
errors are discarded by deforming the ground truth annotation a1 again. This
mechanism enables a successful tracking also in situations where the difference
to the initial frame is temporarily large.

The proposed algorithm has several benefits. It does not require a training
phase, avoids error accumulation, makes no assumptions about motion period-
icity and does not rely on image segmentations. By choosing W1(I1) as a fixed
reference window, we always refer to the given annotation a1 throughout the
whole tracking process. While possibly being at completely different locations,
the image contents inside the windows only exhibit small movements as larger
movements of the structure have already been compensated for by shifting the
window according to the deformation obtained in the prior iteration, see Fig-
ure 2. This procedure generates an excellent starting point for the underlying
non-linear registration scheme.

(a) I100 (b) I150 (c) I500

(d) W99(I100) (e) W149(I150) (f) W499(I500)

Fig. 2. Selected frames of dataset ETH-07. While the colored window (tracked anno-
tation at its center) experiences globally large movements (top row), the contents of
the respective windows remain similar (bottom row).

2.3 Annotation coupling

The tracking scheme is in principle designed for tracking single landmarks. If
multiple landmarks are to be tracked, the choice of window and registration
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Important parameters that allow adapting to different noise and device char-
acteristics are the regularization factor α and the NGF noise parameter η, see
Section 2.1. The threshold θ for the safeguard strategy described in Section 2.2
is adaptively chosen as θ = τ · a

4096 , depending on the window area a. Using all
given datasets, the parameters α, η and τ were manually calibrated per device
and probe. For the ETH datasets, we used α = 0.1, η = 10 and τ = 1490, except
for ETH-1, where because of the different resolution, we set η = 2.5. For the
MED datasets α = 0.5, η = 5 and τ = 1400 were used, except for MED-15,
where τ = 850 was used to compensate for a single exceptional artifact. The
annotations were coupled as follows. ETH-03: 3 → 2, ETH-10: 4 → 3, MED-03:
2 → 4, MED-05: 3 → 2, MED-09: 3 → 2, 5 → 1, MED-10: 2 → 4.

3 Results and Discussion

The non-linear image registration was implemented in C++, while the tracking
framework was scripted in Python and executed in MeVisLab [10]. Our method
was evaluated on all 2D annotation tracking test datasets provided by the orga-
nizers of the CLUST2014 challenge [2]. These datasets contained image sequences
from 264×313 (ETH-01) to 524×591 (MED-13 – MED-15) pixels in resolution,
with number of frames ranging from 2427 (MED-10) to 14516 (ETH-01) frames.
Every first frame was provided with up to five annotations.

On the ETH datasets, our method achieved a mean tracking error (MTE) of
0.89 mm with a standard deviation (σ) of 1.84 mm. For the MED datasets, we
achieved a MTE of 1.73 mm with σ = 1.25 mm, resulting in overall values of
MTE=1.31 mm and σ = 1.63 mm. Full results are given in Table 1. It has to be
noted, that the overall tracking results were negatively influenced by a tracking
failure in dataset ETH-07 that affected only the last ≈ 250 of total 4588 frames.

The algorithm achieved close to real-time performance in all cases, exceeding
acquisition rate in ten cases, computed on a three year old Intel i7-2600 PC with
3.40GHz running Ubuntu Linux 12.04, see Table 1 for computation speed. Thus
real-time performance is easily within reach when using recent hardware.

Currently the choice of suitable parameters requires significant manual fine
tuning since neither spacial image resolution information nor device characteris-
tics such as center frequency were taken into account. Including this information
is subject to future research and may enable automatic parameter calibaration.

We developed a fast and accurate ultrasound tracking algorithm capable
of achieving real-time performance while relying solely on image information,
without any further knowledge like image segmentation or feature recognition
required. Furthermore, no prior training phase is needed and no assumptions
about the type of movement are made.

The proposed scheme can easily be extended to 3D tracking. Since dense
deformation fields are computed in every step, the algorithm can also be used
directly for tracking of segmentations.

Acknowledgment: This work was supported by the Fraunhofer Internal Pro-
grams under Grant No. MAVO 823 287.
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Dataset IAR FPS MTE1 σ1 MTE2 σ2 MTE3 σ3 MTE4 σ4 MTE5 σ5

ETH 01 25 43.5 0.87 0.98
02 16 31.7 0.97 0.46
03 17 14.6 0.37 0.21 0.64 0.36 0.47 0.24
04 15 33.8 0.86 1.20
06 17 14.8 0.62 0.60 1.13 0.85
07 14 33.3 2.87 7.38
08 17 15.0 0.59 0.32 0.68 0.45
09 16 18.3 0.69 0.34 1.01 0.54
10 15 11.1 1.07 0.74 0.80 0.66 0.93 1.23 0.94 1.28

MED 01 20 15.5 1.09 0.61 0.94 0.42 1.04 0.61
02 20 14.3 1.03 0.57 1.30 0.88 1.94 0.46
03 20 14.9 1.23 0.62 2.72 1.84 1.20 0.75 0.91 0.49
05 20 22.6 2.02 0.95 2.14 0.86 2.56 1.08
06 20 14.3 1.71 0.91 1.22 0.55 1.37 0.59
07 20 13.9 3.39 2.22 1.49 0.90 2.17 1.28
08 20 21.9 2.03 1.06 2.52 1.52
09 20 14.2 2.31 1.72 1.23 0.64 1.21 0.81 2.42 0.91 2.71 2.29
10 20 13.0 2.25 1.01 1.67 0.92 2.12 0.96 1.34 0.98

13 11 11.1 1.08 0.69 2.14 1.35 1.13 0.62
14 11 11.6 1.72 0.93 1.88 1.02 2.64 1.64
15 11 29.9 1.32 1.28

Table 1. Mean tracking error (MTE) and standard deviation (σ) in the CLUST14 2D
annotation tracking datasets (empty cells correspond to fewer annotations). Processing
speed is given as frames per second (FPS), image acquisition rate in column IAR.
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tracking solutions at high frame rates at the cost of reduced image quality and
a smaller field of view. Additionally ultrasound imaging allows isotropic image
resolution in 3D and does not suffer from intra-frame motion.

Development of fast tracking methods on continuous ultrasound imaging is
currently subject of research. State-of the-art methods for motion estimation
in 2D and 3D suggest ultrasonic speckle tracking [4], or rigid [5] and non-rigid
registration [6]. More sophisticated approaches make use of statistically validated
motion models [7] [8] or combine scale-adaptive block-matching algorithms with
learning-based techniques [9].

To achieve on-line motion compensation, it is necessary that the methods
work in real-time, i.e. faster than the incoming imaging frame rate. Additionally,
it is necessary for some setups to compensate for latencies that might occur dur-
ing ultrasound image streaming [10] [11] and mechanical latencies [12] [13] (pages
1 to 4). For this reason, it will be useful to combine the tracking method with
additional prediction algorithms to obtain a glimpse into the near future.

In this paper we present two algorithms for fast and robust tracking, one of
them capable to cope with frame rates of up to 25 Hz, and combine the tracking
results with a prediction method that allows a prediction horizon of 200 ms.
Additionally, we introduce a real-time capable smoothing of the tracked point’s
trajectory using polynomial fitting, which improves the prediction.

2 Methods

2.1 Datasets

The CLUST challenge provided 23 2D US sequences of the liver of volunteer
test subjects under free breathing with a duration of 120 to 580 seconds. The
sequences have a temporal resolution of 11-25 Hz and isotropic in-plane resolu-
tion of 0.35-0.71 mm. Two of the sequences come with 2 respectively 3 manually
labeled ground-truth annotations for approximately 10% of the frames as a train-
ing set. A total of 54 points had to be tracked in the test-set where only the
initial position was given.

The 3D datasets consist of 11 sequences with a duration of 5.8 to 27 seconds.
The temporal resolution varies from 6 to 24 Hz depending on the sequence. The
spatial resolution is not necessarily isotropic for all sequences and is in a range
of 0.3 mm up to 1.2 mm. 21 annotations have been provided for the first frame
as the test-set and 4 points as training data.

2.2 2D Motion Tracking using Dense Optical Flow

The first 2D motion tracking method is using a two-frame motion estimation
based on G. Farnebaeck’s polynomial expansion [14] and has originally been
adapted by us for motion tracking in MR images. We use the first frame as a
reference and apply the tracking on each subsequent frame in comparison to the
reference. The result of this operation is a dense motion vector field for the entire
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time. When plotting the trajectories over time the detected outliers appear as
sensor-clipping. By applying real-time capable polynomial fitting (1st order) to
the outlier-filtered trajectories, it is possible to compensate for the clipping. To
achieve non-linearity on a 1st order polynomial fit, the fit is done on overlapping
segments with a constant window-size (number of samples) and then averaging
the accumulated fits for each sample. Another aim of the polynomial fitting is
to provide smoother input for the prediction described in 2.5. The polynomial
fitting tends to under-estimate the motion for the true extreme values but ap-
pears to correctly over-estimate the motion for the samples where the outlier
detection causes the clipping of the trajectory component.

2.3 2D Motion Tracking on GPU

This heuristic procedure has several parameters that were tuned on the labeled
2D data provided for training. Preprocessing: the images were resized for speed
such that the width is 160 pixels. Most of the features to track were vessels
(roughly a black round area surrounded by a whiter tissue boundary), for which
we try to get automatically the cross-section radius (r), in the first image. For
cases that look differently, a default r = 5 pixels is used. The scale of the image is
increased and the estimation repeated until r ≥ 2. Each tracked point is treated
independently, possibly even using the same images resized at a different scale.
A mask is computed containing all pixels that change in a dataset, which corre-
sponds to a device-specific viewport. It can be extracted from previous sessions
and reused, or extracted from the first image automatically under mild assump-
tions. Registration: a quadratic patch with the edge size of 6r (to include the
region of interest and a local neighborhood) is then extracted from the scaled
first image and used as reference. From 3000 random patches with uniformly
random variations of size (±10%) and random skewness (0 . . . 40%), distributed
over the whole field of the current frame, the most similar is computed on GPU.
The similarity function used is the minimum of the correlation coefficients of
the entire patch and of the left/right/top/bottom parts with the corresponding
parts of the reference. A second local search is then performed. This looks for
the best variation (same ranges as above) of the patch found in the first pass,
after a reduction of the edge’s size to 80%. To avoid the flaws of this simple
similarity function, a different one is used to evaluate further the best matching
patch found - the correlation coefficient of the polar coordinates representation
of the central inscribed disc of the patch. For both similarity functions the mask
was taken into account in an attempt to improve the tracking behavior next to
the boundary of the valid area. This is achieved by ignoring the computations of
the pixels known to be outside of the valid area. Postprocessing: in our first
GPU submission we have filtered the raw position guesses produced by the GPU
registration using a simple jump detection, using as threshold 3r. For a second
GPU-based submission, we used the same input but a more refined filtering that
looked both for sudden jumps in position and for sudden variations in similar-
ity. The thresholds used were continuously automatically adjusted, assuming a
normal distribution of the frame-to-frame distances and of the matching quality
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(thresholds set to 3 times the empirical standard variance of the populations
corresponding to frames where the tracking is believed to be good).

2.4 3D Motion Tracking

The same method as in 2.2 has been used for the 3D tracking, which is here in fact
a 2.5D approach. This was done by applying the tracking on the two orthogonal
slices that intersect at the given annotation after rotating the volumes such that
the first 2D coordinate lies in the XY-plane and the second one in the ZY-plane
(depending on the alignment of the input data). This yields two separate tracking
results per frame. As both slices share the Y-axis in 3D space, the tracking results
for this redundant axis have been averaged for both results and we use the X- and
Z-components independently as the final 3D position. As the orthogonal slices
are fixed in their Z-coordinate, the method is sensitive to out-of-plane motion
of the landmark to track. To compensate for out-of-plane motion it is necessary
to adjust the Z-coordinate for one slice according to the X-component of the
motion vector from the orthogonal plane (left as future work).

2.5 Prediction

For the 2D motion vectors, we tested a robust on-line prediction method that
we developed for respiratory motion compensation (tested previously on the
Cyberknife respiratory motion dataset3) after a preprocessing described in [13]
at page 100, set here for predicting the position of the point of interest 200 ms into
the future. As there is only one signal, like there was for the Cyberknife data, the
problem is one of pure auto-regression. The algorithm we used is a linear auto-
regression (AR). More precisely, we employed iterated stable linear regression (3
iterations, elimination of outliers at quantile 0.95). The auto-regression model
was updated once per second, using only data not older than one minute. We used
an order that corresponds to 4.5 seconds at 20 Hz sampling rate. From the history
window, the AR model was built to depend only on the values {T + dt; dt ∈
{0,−1,−2,−3,−5,−8,−13,−21,−34,−55,−89}}, a Fibonacci progression that
stops at 4.5 s into the past (for 20 Hz sampling rate) from the last known value T .
The accuracy we obtained on the Cyberknife database using the Fibonacci auto-
regression delays were comparable to the ones obtained using the full history
window, but the speed was much increased by a factor of about 10. Less training
data had to be collected, as there were less parameters to estimate, therefore the
prediction could start earlier. As the current implementation of the prediction
involves a learning phase of 30 seconds, we did not try to use this prediction for
the 3D tracking due to the insufficient length of the datasets.

2.6 Software Tools and hardware

The methods described in 2.2 were implemented using the Mevislab software,
Python, OpenCV and Numpy. The actual tracking and timing measurement has

3
available at http://signals.rob.uni-luebeck.de/index.php/Signals @ ROB, by courtesy of Dr.
Kevin Cleary and Dr. Sonja Dieterich
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been executed on a Intel Core i7-4770k with 32 GB RAM. The GPU method has
been implemented in Matlab (CPU Intel Xeon E5540, 24 GB RAM) and CUDA
(GPU Nvidia Geforce GTS 450).

3 Results

Tracking Results from Dense Optical Flow: given the fact that focused
ultrasound treatment usually involves ablation of a safety margin around the
tumor [16], the dense optical flow tracking turned out to work with the pre-
cision required for surgery despite the reduced resolution due to down-scaling
the images. The mean tracking error (MTE) for the entire test-set of 54 points
is 1.82 ± 2.37 mm. Only 5 out of 54 points yielded poor results with a mean
error above 3 mm. The high-deviation results can be explained by out-of-plane
motion causing the tracked landmark to change its shape or if the landmark
is close to the border of the field of view in combination with high amplitude
motion. This occasionally causes the motion vectors to flip around one axis for
certain cases. The polynomial fitting has almost no impact on the overall out-
come (1.82 ± 2.34 mm) and mostly helps to marginally improve results that
already have low deviation. The average calculation time for all points is 40 ms
depending on the amount of scaling.

GPU Tracking Results: the more refined, self-tuning outliers detection
produced better results than the simple threshold detection. The mean tracking
error it produced was 1.55±2.78 mm for one 2D subset (outperforming the dense
optical flow based method) and 2.40± 2.78 mm for the second one. The average
processing time per frame was 250 ms (179 ms without using the advanced
outliers detection), conditioned by the speed of the GPU.

3D Tracking Results: as the 3D tracking is lacking a Z-coordinate ad-
justment the results are suffering from out-of-plane motion. The MTE is 5.24±
4.34 mm for all 21 points across different datasets. One data subset has a sig-
nificantly higher error of 7.61 mm. This can be explained by the lower and
anisotropic voxel-resolution. As the tracking is performed on two orthogonal
slices the average processing time per frame of 60.68 ms is slightly higher than
in the 2D datasets but still below the 3D images’ frame-rate (real-time) except
for one data subset with temporal resolution of 24 Hz.

Prediction Results: the prediction has been executed on both the polyfit-
ted and non-poly-fitted dense optical flow results, however only the prediction on
the non-polyfitted results has been submitted for evaluation. The MAE for the
prediction results is 2.04±2.36 mm. Given that polynomial fitting has no impact
on the quality of the dense optical flow tracking (see 3) it was possible to deter-
mine the difference (RMS) of the prediction on the polyfitted and non-polyfitted
results. While the prediction on the non-polyfitted tracking results reproduces
the high-frequency motion and leads to reduced precision of the prediction, the
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polynomial fitted trajectories decrease the RMS deviation for the prediction by
65 % for all points - Fig. 1(b)4.

4 Discussion and Conclusion

As the result of the Dense Optical Flow tracking is a motion vector field for the
entire image, multiple points/landmarks can be tracked in parallel without any
additional processing time. If the expected trajectory of the landmark is known
in advance, it is possible to apply the dense optical flow on a small patch of
the input image. This can significantly reduce the processing time and allows
to omit the scaling operation to preserve all details in the region of interest.
To improve the 3D tracking, it is planned to adjust the slices’ Z-coordinate
according to the orthogonal X-motion vector. As the outliers from the tracking
can be detected on-the-fly, there is a chance to improve the prediction by taking
the outlier-indicators into account to reduce the influence of those samples on
the prediction. For 2D tracking it is essential to minimize out-of-plane motion
by proper alignment of the FOV orthogonal to the dominant axis of motion.

The GPU used is more than three years old and underpowered in comparison
to the latest ones, which limited our options in compromising between the speed
and the quality of the optimization. The speed of the GPU tracking is completely
scalable and can be much higher (reaching real-time capabilities on preliminary
tests with a more modern graphic card, Quadro K5000).

We have shown in this paper the results of two tracking algorithms in combi-
nation with auto-regressive prediction. While both tracking methods work with
the precision required for surgery [16], there is a small advantage in precision
for the GPU tracking. The dense optical flow tracking has an advantage in its
capability to cope with high imaging frame rates and the additional benefit of
being able to track multiple landmarks in the same image without any additional
processing time. Even though the GPU tracking is not capable of handling the
high frame rate of US imaging, it might be useful to combine it with the dense
optical flow tracking and potentially predict intermediate positions from infre-
quent updates from both tracking methods. The runtime overhead for both the
polynomial fitting and the prediction is negligible in comparison to the pro-
cessing time for the tracking. Interestingly the polynomial fitting has significant
influence on the prediction results. As the prediction results for the polynomial
fitted tracking are almost indistinguishable from the polyfitted tracking results,
the performance of the prediction solely depends on the the quality of its input
data.
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Sven Rothlübbers1, Julia Schwaab2, Jürgen Jenne1, Matthias Günther1

1 Fraunhofer MEVIS, Bremen, Germany
2 Mediri GmbH, Heidelberg, Germany

Abstract. We present the implementation of a Bayesian algorithm for
tracking single features throughout ultrasound image sequences, with a
focus on real-time applicability. After introducing the general concept
of the algorithm, we suggest a sparse description of the target object to
allow for rapid computation and semi-automatic target initialization. In
2D and 3D single feature tracking scenarios of the MICCAI challenge
for liver ultrasound tracking (CLUST) 2014 we evaluate the algorithm
and find mean tracking times of 1.25ms (2D) and 46.8ms (3D) per frame
with mean tracking errors of 1.36mm (2D) and 2.79mm (3D).

Keywords: medical imaging, ultrasound, tracking, particle filter

Introduction

Ultrasound imaging offers the opportunity to generate image streams with high
frame rates, allowing to track the motion of features for various purposes in
medical applications. For real-time applications, the image stream has to be
analyzed sufficiently fast and reliably[4, 5]. Particle filter algorithms[1], being
capable of handling multiple hypotheses about a target’s position, have already
been applied successfully[2, 3, 6]. Their performance strongly depends on the
quality of the target description. We propose a sparse but sufficiently precise
description model, which will allow for real-time applications as well as semi-
automatic target initialization.

1 Materials and Methods

Conditional Density Propagation Algorithm A tracking problem may be
approached by describing the evolution of a probability density function within
the image stream. The density function is represented by a set of samples or par-
ticles describing possible states of the target. While tracking, it is continuously
updated by estimations and observations. Here, the system state is modeled by
independent states defining the ND independent degrees of freedom. Propaga-
tion of states is given by the Markovian assumption that the succeeding state
xdt+1 only depends on the current xdt instead of all possible predecessors xd

t .

p(xdt+1|xd
t ) = p(xdt+1|xdt ) (1)
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Stochastic Estimation Model Lacking knowledge about the degrees of free-
dom or their limitations, we apply a simple stochastic model incorporating drift
towards a mean state and random diffusion. The states of different degrees of
freedom d are considered independent of each other.

p(xdt+1|xd
t ) = 〈xd〉s + Sd

0

[
xdt − 〈xd〉s

]
+ Sd

1η (2)

The term Sd
0 determines drift towards the current mean state, averaged over

all samples 〈xd〉s while the random diffusion term Sd
1 sets the strength of a

Gaussian random variable η.

Transformation Model Local features exhibit only few degrees of freedom and
allow considering rigid transformations only. A transformation model featuring
rotation and scaling around a center of mass and translation is chosen.

T (sj) = Ttrans(sj)Trot(sj)Tscale(sj) (3)

The transformation matrix T (sj) translates Nd = 5 (Tx, Ty, Sx, Sy, Rz) or
Nd = 9 (...,Tz, Sz, Rx,Ry) independent degrees of freedom - given by samples sj
- into a transformation matrix which transforms points from observation model
space to image space.

Observation Model Real-time applications require a sparse, yet precise de-
scription of the target feature. The observation model describes the feature to
be tracked and, given a position guess, returns a quality value to that guess. We
describe the target feature, a liver vessel for instance, by a set of points with
associated descriptors for brightness and darkness.

The descriptors define a local contrast - dark and bright regions of the local
feature: Each point ri in the model is assigned a likelihood of belonging to the
dark (pdrki ) and the bright(pbrti ) part of the feature, which later will be derived
from absolute brightness values bi. In order to describe a relative contrast, values
are kept normalized over all points (NP ):∑

Np

pdrki = 1 =
∑
Np

pbrti (4)

The quality of a position guess, given by a sample sj ’s transformation matrix
T (sj) and the current image b, can be estimated by applying a weighting function
such as:

w′(sj) =

Np∑
i=1

[
pbrti − pdrki

]
· b (T (sj)ri) (5)

For one sample sj all observation points ri are transformed into the image
with the same transformation matrix T (sj). Each point i is transformed to its

position T (sj)ri and has an effective weight peffi = pbrti − pdrki which may be

positive or negative. If the point is expected to be bright (peffi > 0) and found
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bright (b(T (sj)ri) high), this will increase the weight w′(sj). Similarly, if the

point is expected dark (peffi < 0) and found dark (b(T (sj)ri) ≈ 0) this will not
decrease the weight. In cases the brightness is not as expected, the weight will
not be increased or even decreased respectively, returning a lower weight w′(sj)
for the sample. In the presented algorithm, the final weighting function is set to

w(sj) = Θ(w′(sj))w
′2(sj). (6)

Weights are interpreted as relative probabilities for re-sampling and thus
can’t be negative3. Emphasizing samples with higher weight, taking the power
of two, shows to increase tracking performance.

Fig. 1. Initialization: (Left)
Within radius R0 of a given
initial position node points on
a local triangular grid with
grid constant R1 are chosen.
(Right) Sample initialization of
point weights in a first frame:
Area indicates value and color
encodes sign (red: negative,
green: positive) of the effective
weight peffi .

Observation Model Initialization The proposed definition of contrast might
be applied to the whole target region, taking every pixel into account. As redun-
dancies can be expected, it is assumed that not the whole target region needs
to be stored in the observation model and that it suffices to hold only a few
sampling points. A gain in computational speed is the immediate advantage,
but the choice of a proper sub-sampling in the region is important. Here, the
most simple assumption is explored:

The region of interest is sampled with a uniform triangular (2D) or tetrahe-
dral (3D) grid (fig. 1) to cover space optimally. The two parameters of this grid
are the grid radius R0 around the target position and the grid edge length R1,
describing the distance of adjacent points. The observation model is initialized
from the first frame of the sequence and the given target position vector. The
brightness values bi at the initial grid points are used to set the likelihood for
brightness and darkness for each observation model point

pbrti ∝ (bi − bmin) pdrki ∝ (bmax − bi) (7)

where bmax and bmin are maximal and minimal brightness among all points.

3 Using formula 5 only, they might however appear if the observation is taken at a
position which shows inverted brightness values to the target region. The Heaviside
function Θ(x) sets negative weights to zero, excluding the affected sample from re-
sampling.
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Robustness Against Lag The single position value, returned from the proba-
bility density function given by all samples, is the observation model’s geometric
center averaged over all samples. When rapid motion has to be tracked, the
probability density function may spread out and the mean may be left behind
leading to visible lag. As precision is considered more important than computa-
tional speed some computational power is used execute multiple tracking steps
in one frame, denoted as tracking repetitions FT .

Data Data for performance evaluation is given by the MICCAI CLUST chal-
lenge as 2D or 3D liver ultrasound sequences. The 2D sets feature spatial res-
olutions of 0.36mm-0.55mm in 2427 up to 14516 frames per set. The 3D sets
have resolutions of 0.308mm × 0.514mm × 0.6699mm (ICR), 0.7mm isotropic
(SMT), 1.144mm × 0.594mm × 1.193mm (EMC) with 54-159 frames per se-
quence. For each sequence one or more target annotations are given for the first
frame, indicating the features to be tracked. The remaining position sequence is
to be generated by the tracking algorithm.

Setup Image information of the first frame, the initial position and additional
tracker description parameters - region size and resolution - are used to initialize
the target representation of the tracker. Additionally, the estimation model is
set to constant drift and diffusion terms for all degrees of freedom4. Finally, the
number of samples NS and tracking repetitions FT are set.

Code Execution The core source code for the algorithm is written in C++ and
integrated into a module for the image processing and visualization framework
MeVisLab (MeVis Medical Solutions, Bremen, Germany). This framework was
used for the high level evaluation routines using Python scripts. The code was
executed single threaded on a Windows 7 machine with an Intel Core i7-2600
CPU @ 3.4GHz and 32GB RAM.

Performance Considerations For each frame computation time is constant,
as the amount of computations needed is fixed. Most of the computation is spent
for transforming positions for each sample and each point in the observation
model. Main contribution of computation time of tracking is given by

TC = C0NsNpFT (8)

with sample count Ns, point count Np, tracking repetitions FT and machine
dependent proportionality constant C0. Using a sparse observation model with
low Np can lead to lower computational cost, but may introduce uncertainty.
Similarly, there is a trade-off between precision and speed involved when chang-
ing the number of samples Ns. For the challenge, values which allow for fast and
reproducible results are explored.

4 In the presented results, drift terms are set to 1, meaning that no drift is consid-
ered. Also, as naturally no rotation and only little scaling are expected of small
liver features, we neglect rotation and scaling, setting them to 0. Translation is set
isotropic.
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2 Results

0 2 4 6 8 Error / mm

ETH.06.1
ETH.03.3
ETH.08.1
ETH.09.2
ETH.03.1
ETH.10.3
ETH.10.1
ETH.10.2
ETH.10.4
ETH.09.1
ETH.01.1
ETH.04.1
ETH.08.2
ETH.06.2
ICR.01.1

MED.15.1
MED.06.2
ETH.07.1
SMT.09.2
ETH.03.2
MED.01.2
MED.09.3
SMT.09.1
MED.01.1
SMT.05.2
MED.03.3
MED.13.3
SMT.06.1
MED.09.5
MED.06.3
MED.13.1
MED.09.2
MED.10.2
MED.03.4
MED.01.3
MED.10.4
MED.03.1
MED.03.2
ETH.02.1
MED.02.1
MED.06.1
MED.02.3
MED.13.2
SMT.02.2
MED.02.2
MED.10.3
MED.14.2
SMT.03.2
MED.09.1
MED.07.2
MED.14.1
MED.05.2
SMT.06.3
SMT.02.1
MED.05.1
MED.05.3
MED.08.1
SMT.03.1
MED.10.1
EMC.05.1
MED.09.4
SMT.06.2
MED.14.3
SMT.09.3
MED.07.1
MED.08.2
SMT.02.3
MED.07.3
SMT.05.1
EMC.02.2
EMC.02.1
EMC.02.3
SMT.04.1
EMC.03.1
EMC.02.4

Data Settings Time / ms

STr
1 R0 R1 NP NS FT td tf

MED 3.3 26 5.0 117 346 1.6 54.6 1.22

ETH 2.9 18 2.7 172 200 2.0 60.5 1.33

2D 3.2 24 4.3 134 300 1.7 56.4 1.25

ICR 1.0 15 1.6 4735 100 4 41.7 36.2

EMC 1.0 14 1.6 3344 583 4 166.7 121.2

SMT 1.0 11 1.8 2141 129 4 125 15.6

3D 1.0 12 1.7 2608 257 4 122 46.8

Table 1. Mean settings and tracking times for
the datasets: Isotropic diffusion of translation
(STr

1 ) in arbitrary units. Grid distances R0, R1

in voxels and the resulting number of points NP

in the observation model. Number of samples
NS and tracking repetitions FT . Duration of a
frame in the sequence td = 1/FPS and mea-
sured tracking time per frame tf .

Data Tracking Error / mm

MTE SD 95% min max

MED 1.93 1.32 4.48 0.02 13.52

ETH 0.77 0.59 1.85 0.00 13.35

2D 1.36 1.17 3.61 0.00 13.52

ICR 0.95 0.55 1.84 0.09 1.90

EMC 6.28 4.49 14.20 0.68 19.33

SMT 2.70 2.62 7.91 0.15 24.70

3D 2.79 2.74 8.35 0.09 24.70

Table 2. Resulting tracking error averaged over
data sets: Mean tracking error (MTE), standard
deviation of error (SD), minimum and maximum
error (min, max) and 95th percentile. Depicted
in more detail in figure 2.

Fig. 2. Distribution of results presented in table
2: Mean (black), standard deviation (box), min-
imum and maximum error (whiskers) and 95th
percentile (red dot) for 2D (green) and 3D (blue)
sets. All sets are sorted by their mean perfor-
mance. The noticeable outliers of set ETH-10
are related to a single frame irregularity in the
sequence.
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Comparison to Ground Truth The difference between tracking result and
ground truth of the challenge was evaluated in several categories (fig. 2, tab. 1
& 2). The 2D sets (fig. 3) exhibit mean errors of 1.93mm (MED) and 0.77mm
(ETH). In total, the mean error is 1.36mm with a standard deviation of 1.17mm.
Largest errors were caused by a target region including two targets which later
move apart (MED-07 1) or vessels changing shape (MED-07 3, also fig. 4). Set
ETH-10 shows an irregular frame (03598) causing a temporary deviation, but
not affecting the overall tracking performance.
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Fig. 3. Sample run on
training case ETH-05 2:
STr
1 = 1, R0 =

13,R1 = 2. Tracking re-
sult (green) and ground
truth (red dots).

The straightforward extension of the 2D tracking algorithm to 3 dimensions
shows mean errors of 0.95mm (ICR), 2.70mm (SMT) and 6.28mm (EMC). Larger
errors in the SMC dataset are related to a target disappearing on the border of
the volume (SMT-05 1), and a dataset in which the target region lacks a unique
local contrast (SMT-04 1). Similarly, in the EMC sets, the definition of a suitable
target region is difficult due to low resolution images and relatively large (non-
local) features.

Fig. 4. Sample images of a diffi-
cult training sequence (ETH-04 3)
in which the target changes the
original shape (red) and repeatedly
leaves the field of view.

Generally, minimal errors could be achieved if the target feature showed a
distinct pattern and strong contrast. Arteries, exhibiting bright borders, could
be tracked more reliably than veins with less local contrast. Smaller features
returned better results as they fit the assumption of locally rigid transformations.

Two dimensional features changing shape locally (fig. 4) indicate out of frame
motion and may be difficult to track for the algorithm. A global change in
contrast, however, can be handled by the algorithm as it relies on relative instead
of absolute brightness values.

If the observation model includes structures not belonging to the target, like
the diaphragm or out-of-volume area, this may spoil tracking performance. While
the former can only be dealt with by careful choice of targets, the latter might
be handled automatically by a future algorithm.
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1ms - 372ms/frame in 3D. Compared to the challenge’s ground truth, 2D and
3D tracking results exhibited mean errors of 1.36mm and 2.79mm respectively,
which showed to depend on the data set group or ultrasound device the data
was recorded with.

The proposed algorithm shows to work reliably, yet there are ways to op-
timize it. The performance was found to be independent over a wide range of
parameters, but emphasis to either speed or precision may be given by setting
the number of samples or resolution of the model. A sparse observation model
was applied by under sampling the target region with a local grid without any
further information. Deciding which points of the region are actually important
for the algorithm by a more elaborate algorithm could help improve efficiency
much further - especially in three dimensions.

In conclusion, with the proposed algorithm results could be generated in
real-time, by using a simple sparse target representation. Although the results
showed high precision in 2 dimensions already, by using a more sophisticated
observation model, the algorithm may be improved much further for the 3D
case in the future.
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Live Feature Tracking
in Ultrasound Liver Sequences
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Abstract. We describe methods for feature tracking in temporal im-
age sequences, based on a motion estimation framework called Sparse
Demons. It relies on a Gaussian-convolution model of the deformation
field; this model is embedded in a variational formulation with a cost
function defined on a finite number of points of interest. The resulting
algorithm is fast and suitable for real-time, live feature tracking. Our
methods are evaluated on the CLUST’14 database, consisting in 2D and
3D ultrasound liver sequences with landmarks or areas to be tracked.

1 Introduction

In this paper, we present methods for automatic tracking of anatomical features
in the liver, in 2D and 3D ultrasound sequences. We apply our methods to the
database of the MICCAI CLUST’14 challenge1. The features to track are land-
marks and regions placed at locations of interest such as portal or hepatic veins
bifurcations and tumors. The applicative scenario of the CLUST challenge is in-
tervention and therapy in the liver under real-time ultrasound image guidance.
More specifically, we address the issue of real-time compensation of the respira-
tory motion in the liver. To this end, we propose fast methods that do not rely
on access to “images from the future”. Moreover, we assume that:

– The ultrasound probe, be it 2D or 3D, does not drastically move during the
acquisition.

– The acquisition frame rate of the ultrasound system is high, so that the
motion between two consecutive frames is limited to a few millimeters.

For both the 2D and 3D datasets, we use a common motion estimation
framework called Sparse Demons, described in section 2. Different strategies are
adopted according to the objects to track – landmarks or regions, and the na-
ture and quality of the datasets – 2D or 3D, with or without gain control. In 2D
(sections 3 and 4), out-of-plane motion is expected, so that the method should
be robust to appearing and disappearing features. In 3D (section 5), we designed
anti-drift strategies based on the assumption that the respiratory motion is peri-
odic. The results of our methods on the CLUST datasets were evaluated by the
organization committee, based on a ground truth made of manual annotations.

1 http://clust14.ethz.ch/
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2 Sparse Demons

Feature tracking along a temporal sequence is regarded as a succession of reference-
to-template motion estimation problems; at each incoming template frame the
new positions of the tracked features are obtained in a causal manner by prop-
agating the reference positions according to the estimated displacement. Sparse
Demons is a variational approach to solve each reference-to-template problem.
The key idea of our method is to find an optimal dense, non-rigid displacement
field by minimizing an energy E defined only on a finite number of points of
interest {xi | i ∈ P}:

E =
∑
i∈P

∫
Ω

δ(x− xi) D
[
R(x)− T (x + u(x))

]
dx (1)

where R and T are the reference and template images respectively, Ω is the image
domain and δ is the Dirac function. D : R→ R is a function that penalizes the
dissimilarity between the reference and the transformed template; for instance,
D(x) = x2/2 was used in [1]. As for the displacement field, we adopt a fluid-
like regularization, which can be approximated by Gaussian filtering [2]; in this
model, u is assumed to be the result of the convolution of an auxiliary field v
with a Gaussian kernel ωσ of scale σ:

u(x) = [ωσ ∗ v] (x) =

∫
Ω

ωσ(x− y)v(y) dy (2)

where ωσ(x) = 1
2πσ2 e

‖x‖
2σ2 .

Minimizing E w.r.t. v is done by gradient descent; calculus of variations
results in the following evolution equation:

∂v

∂t
= −∇vE = −ωσ ∗

(∑
i∈P

δi∇uE

)
(3)

where δi(x) = δ(x− xi) and ∇uE is the dense gradient of E w.r.t. u:

∇uE(x) = −D′
[
R(x)− T (x + u(x))

]
∇T (x + u(x)) (4)

The subsequent algorithm (see below) has similarities with the demons algorithm
[3, 4]. Its computational complexity is however lower since image forces are not
computed in the whole image domain but only at points xi.

The following sections describe how we used this general image pair registra-
tion framework to track features in a causal manner along 2D and 3D ultrasound
liver sequences from the CLUST database. One of the values of this database is
to provide long sequences over many breathing cycles, which are challenging for
simple (t− 1)-to-t estimation schemes as errors accumulate and cause inevitable
drifting. For every subclass of the database, we investigated several anti-drift
mechanisms in a live tracking scenario. In each section, we specify the point
inputs, the dissimilarity measure, the respective expression of the subsequent
dense energy gradient (4), and propose ways to avoid drifting.
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Algorithm 1: Sparse Demons - Gradient Descent

Set k = 0 and v0 = 0
repeat

Compute uk = ωσ ∗ vk
for all xi do

Interpolate T (x + uk(xi)) and ∇T (x + uk(xi))
Compute ∇ukE(xi) according to (4)

end
Smooth the result to obtain the incremental update

δvk = −ωσ ∗

(∑
i∈P

δi∇ukE

)
Update vk+1 = vk + δt.δvk

k = k + 1
until steady state;

3 Landmark Tracking in 2D

3.1 Method

In these datasets (“ETH” and “MED”), the gray values are consistent along the
sequences. We therefore use the squared difference as dissimilarity measure, i.e.
D(x) = x2/2, which yields the following energy gradient:

∇uE(x) = −
[
R(x)− T (x + u(x))

]
∇T (x + u(x)) (5)

At each frame, the reference points of interest xi are chosen in the neighbour-
hood of the landmarks, based on the amplitude of the image gradient: pixels on
edges are selected and those in the flat regions are discarded (see Fig. 1). The
neighbourhoods are squares of size ∆p, centered on the landmarks.

The tracking consists of two phases:

Initial (t− 1)-to-t tracking From frame 1 to τ (typically 100), the template is
the incoming frame t and the reference is the previous frame (t− 1). During
this phase, a mean reference patch is concurrently built around each initial
landmark. Each reference patch consists in a small square image of size ∆p,
obtained by summing the patches centered on the corresponding landmark’s
positions at every frame (Fig. 2(b)).

1-to-t patch registration From frame τ+1 onwards, for each incoming frame,
we register template patches around the current landmark positions (Fig. 2(c)),
towards the corresponding reference patches, which yields the position cor-
rection from frame (t − 1) to t. The aim of this scheme is to prevent drift
by error accumulation, that inevitably occurs with a (t − 1)-to-t scheme
when the sequence is long. Moreover, to prevent one drifting landmark from
influencing the others, we track each landmark independently.
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Fig. 1. Reference points (shown on a frame from the MED-13 sequence): the selected
points of interest xi (blue) are the pixels with larger image gradient in the neighbour-
hood of the current landmarks (green).

(a) Frame 19 of MED-03 (b) Reference patches (c) Template patches

Fig. 2. Reference and template patches in 2D landmark tracking.
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3.2 Results

The test database for this part of the challenge contains 21 sequences of several
thousands of frames (from 2424 to 14516) and 1 to 5 landmarks to be tracked.
The parameters were tuned to σ = 30 mm, τ = 100 frames and ∆p = 30 pixels.
The tracking error is defined as the Euclidean distance to the manually anno-
tated ground truth. Table 1 below displays mean errors for all landmarks of all
sequences for the “ETH” and “MED” datasets.

Dataset MTE SD min 95% max

ETH 0.98 1.14 0.00 2.45 24.16
MED 2.48 3.59 0.02 6.89 38.88

All2Dpoints 1.74 2.78 0.00 4.67 38.88

Table 1. Results for 2D landmark tracking. Mean Tracking Errors (MTE), Standard
Deviations (SD), mininum errors (min), 95th percentiles (95%) and maximum errors
(max) are given in [mm].

4 Segmentation Tracking in 2D

4.1 Method

These sequences display some large intensity changes from one frame to the next
and using the sum of squared difference as dissimilarity measure is not suitable.
Instead, we minimize the entropy of the difference between the reference and the
transformed template, which yields the energy:

E = −
∫
R
pu(a) log (pu(a)) da (6)

pu is the continuous Parzen estimate of the probability density function of the
image difference over the the points of interest:

pu(a) =
1

|P|
∑
i∈P

∫
Ω

δ(x− xi) K
(
R(x)− T (x + u(x))− a

)
dx (7)

where K a smooth non-negative normalized Gaussian kernel. Calculus of varia-
tions results in the following dense energy gradient:

∇uE(x) = −
[
K ∗ p

′
u

pu

](
R(x)− T (x + u(x))

)
∇T (x + u(x)) (8)

Like in the previous section, the points of interest xi are selected in the
neighbourhood of the segmentation boundary, based on the amplitude of the
image gradient. Since these sequences are short, the strategy to process the
sequence is the (t− 1)-to-t scheme.
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4.2 Results

The test database for this part of the challenge contains 7 short sequences (from
51 to 105 frames) and 1 or 2 areas to be tracked. The Gaussian scale of the
displacement was tuned to σ = 30 mm. The tracking is evaluated through the
Dice coefficient between the tracked area and the manually segmented ground
truth (Table 2).

Dataset MDice SD min max

OX-01 1 86.76 5.46 74.25 96.54
OX-02 1 85.66 4.99 73.25 97.74
OX-04 1 91.43 6.57 47.22 97.66
OX-05 1 79.93 6.71 61.79 95.84
OX-06 1 76.93 9.36 53.55 94.17
OX-07 1 89.71 4.39 72.41 97.74
OX-07 2 77.42 5.25 67.39 94.42
OX-08 1 88.75 2.83 79.19 98.27

Table 2. Results for 2D area tracking. Mean Dice (MDice), Standard Deviations (SD),
minimum (min) and maximum (max) are given in [%].

5 Landmark Tracking in 3D

5.1 Method

In these datasets (“ICR”, “SMT”, and “EMC”), the gray values are consistent
along most sequences. We therefore use the squared difference as dissimilarity
measure (5), like in section 3. At each frame, the reference points of interest
xi are chosen in the neighbourhood of the landmarks on a square grid of size
80mm, regularly spaced by 10mm. Besides more sophisticated ultrasound shadow
detectors, points are simply discarded in the darkest regions. The baseline is a
(t−1)-to-t tracking, where all points of interest in all neighbourhoods are tracked
together at once. To prevent drifting, an additional 1-to-t tracking is enabled if
any of the two following triggers occurs:

Close histogram trigger From analyzing the differences between image his-
tograms w.r.t. the reference difference level computed between the first two
frames of the sequence, we can detect that the current incoming frame is
close (not exceeding more than 20% of the reference difference level) in ap-
pearance to the initial frame where source annotations were given, which
implies that a direct registration shall succeed.
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Close location trigger From trajectory analysis, when landmarks positions
get close (below 1.8 mm) to the positions of the source annotations given in
the first frame, we also deem that a direct registration shall succeed. This
trigger relies on the assumption that the probe is not moved during the
sequence acquisition.

If triggered, the 1-to-t tracking overrides the (t− 1)-to-t tracking.

5.2 Results

The database for the 3D landmark data class of the challenge contains 10 se-
quences of 54 to 159 frames and 1 to 4 landmarks to be tracked. The tracking
error is defined as the Euclidean distance to the manually annotated ground
truth. Table 3 below displays errors for all landmarks of all sequences per insti-
tution.

Dataset series MTE SD min 95% max

ICR 3.20 2.50 0.58 7.06 7.17
SMT 2.66 2.57 0.26 8.44 16.61
EMC 5.67 5.16 0.41 16.68 17.49

All3Dpoints 2.78 2.72 0.26 9.20 17.49

Table 3. Results for 3D landmark tracking. Mean Tracking Errors (MTE), Standard
Deviations (SD), minimum errors (min), 95th percentiles (95%) and maximum errors
(max) are given in [mm].

6 Discussion and Conclusion

In terms of run-time estimation, it has to be noted that for both 2D and 3D,
the tracking process is today somehow ”irregular”. Indeed, in 2D for instance,
each given feature is first processed during a training period, then a different
tracking can start. Likewise in 3D, the anti-drift strategy triggers additional
motion estimations on an unsystematic basis. Also, the processing time depends
on the number of features to be tracked. As the applicative scenario of the
contest is not completely defined (total number of features to be tracked, adding
features one by one as incoming frames flow, desired accuracy, etc.), the technical
approach is not finalized. We report orders of magnitude of the computational
load of these methods, taking into account that they have not been specifically
optimized to that respect. On a multithreaded PC platform, the following frame
rates are obtained with the described methods: around 40Hz in 2D, and around
10Hz in 3D.
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The methods described in this paper are dedicated to live real time ultra-
sound. They are still under development, and the CLUST contest greatly helps
in the design of the suitable approach and technologies. At testing and improv-
ing our methods on this challenging data, we stuck to the applicative scenario
of a causal system. The progressive evolution of the tracked features been under
scrutiny, and a final success criterion has been: whether the tracked features vi-
sually drift before the end of the sequence, and in that case whether the anti-drift
mechanisms get them back on track w.r.t. the image content of the last frames.
This is complementary to the criteria of overall average agreement or bounded
disagreement highlighted by the quantitative results. Thus we have identified
the drift to be the main issue of the tracking exercise. The 2D segmentation test
set and the 3D test set probably do not contain a sufficient number of frames to
validate that a live sequence tracking approach is reliable on the long term. In 2D
however, the test sets seem long enough so as to establish a proof of concept.
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Data Description

The Challenge on Liver Ultrasound Tracking (CLUST) would not have been
possible without images and annotations. This section provides an overview
of the data, the contributors and the associated references.

Tables 1-3 list the details for each sequence. The data, which was released
for training and test purposes at different times, is divided into 3 categories,
namely 2D sequences with annotation of point-landmarks (see Table 1), 2D
sequences with segmentations (see Table 2) and 3D sequences with point-
landmarks (see Table 3).

Data Contributors

Six groups provided data and generally also the corresponding annotations
for CLUST 2014. These groups and their related publications are listed
below, following the order of appearance in Tables 1-3.

ETH [3, 6] Computer Vision Laboratory, ETH Zurich, Switzerland
MED - mediri GmbH, Heidelberg, Germany
OX [2] Institute of Biomedical Engineering, University of Oxford,

UK
EMC [1] Biomedical Imaging Group, Departments of Radiology

and Medical Informatics, Erasmus MC, Rotterdam, The
Netherlands

ICR [4, 5] Joint Department of Physics, Institute of Cancer Research
& Royal Marsden NHS Foundation Trust, London and Sut-
ton, UK

SMT [7] SINTEF Medical Technology, Image Guided Therapy,
Trondheim, Norway
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Table 1: Summary of the challenge data for 2D sequences with annotation of
point-landmarks. The test set is listed in black font. The training sequences,
for which all available annotations were provided, are highlighted in red. The
test set in green was released shortly before the MICCAI conference.

Sequence info Acquisition info

Sequence Im.size Im.res. No. Im.rate Annotation Scanner Probe Freq.
[pix] [mm] frames [Hz] No. [MHz]

ETH-01 264x313 0.71 14516 25 1 Siemens Antares CH4-1 2.22
ETH-02 462x580 0.40 5244 16 1 Siemens Antares CH4-1 2.00
ETH-03 462x589 0.36 5578 17 3 Siemens Antares CH4-1 1.82
ETH-04 472x565 0.42 2620 15 1 Siemens Antares CH4-1 2.22
ETH-05 490x570 0.40 3652 15 2 Siemens Antares CH4-1 2.22
ETH-06 475x548 0.37 5586 17 2 Siemens Antares CH4-1 1.82
ETH-07 473x437 0.28 4588 14 1 Siemens Antares CH4-1 2.22
ETH-08 466x562 0.36 5574 17 2 Siemens Antares CH4-1 1.82
ETH-09 469x523 0.40 5247 16 2 Siemens Antares CH4-1 1.82
ETH-10 464x560 0.40 4587 15 4 Siemens Antares CH4-1 1.82
ETH-11 462x563 0.42 4615 15 2 Siemens Antares CH4-1 1.82
ETH-12 478x552 0.45 4284 14 1 Siemens Antares CH4-1 2.22

MED-01 512x512 0.41 2470 20 3 DiPhAs Fraunhofer VermonCLA 5.5
MED-02 512x512 0.41 2478 20 3 DiPhAs Fraunhofer VermonCLA 5.5
MED-03 512x512 0.41 2456 20 4 DiPhAs Fraunhofer VermonCLA 5.5
MED-04 512x512 0.41 2455 20 3 DiPhAs Fraunhofer VermonCLA 5.5
MED-05 512x512 0.41 2458 20 3 DiPhAs Fraunhofer VermonCLA 5.5
MED-06 512x512 0.41 2443 20 3 DiPhAs Fraunhofer VermonCLA 5.5
MED-07 512x512 0.41 2450 20 3 DiPhAs Fraunhofer VermonCLA 5.5
MED-08 512x512 0.41 2442 20 2 DiPhAs Fraunhofer VermonCLA 5.5
MED-09 512x512 0.41 2436 20 5 DiPhAs Fraunhofer VermonCLA 5.5
MED-10 512x512 0.41 2427 20 4 DiPhAs Fraunhofer VermonCLA 5.5
MED-11 512x512 0.41 2424 20 3 DiPhAs Fraunhofer VermonCLA 5.5
MED-12 512x512 0.41 2450 20 3 DiPhAs Fraunhofer VermonCLA 5.5
MED-13 524x591 0.35 3304 11 3 Zonare z.one C4-1 4.0
MED-14 524x591 0.35 3304 11 3 Zonare z.one C4-1 4.0
MED-15 524x591 0.35 3304 11 1 Zonare z.one C4-1 4.0
MED-16 524x591 0.35 3304 11 2 Zonare z.one C4-1 4.0

Table 2: Summary of the challenge data for 2D sequences with segmentations
of tumor areas. The test set is listed in black font. The training sequences,
for which all available annotations were provided, are highlighted in red.
The test set in green was released shortly before the MICCAI conference.

Sequence info Acquisition info

Sequence Im.size Im.res. No. Im.rate Annotation Scanner Probe Freq.
[pix] [mm] frames [Hz] No. [MHz]

OX-01 416x528 0.30 71 12 1 Zonare z.one P4-1 3.6
OX-02 336x448 0.40 82 12 1 Zonare z.one P4-1 3.6
OX-03 416x528 0.38 82 12 1 Zonare z.one P4-1 3.4
OX-04 336x448 0.36 51 14.5 1 Zonare z.one C6-2 4.4
OX-05 337x448 0.46 101 11.7 1 Zonare z.one C6-2 3.8
OX-06 337x449 0.55 76 11 1 Zonare z.one C6-2 3.8
OX-07 338x450 0.50 63 10 2 Zonare z.one C6-2 3.8
OX-08 337x448 0.46 105 11 1 Zonare z.one C6-2 3.8
OX-09 338x450 0.50 98 10 2 Zonare z.one C6-2 3.8
OX-10 337x449 0.55 92 11 1 Zonare z.one C6-2 3.8
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Table 3: Summary of the challenge data for 3D sequences with annotations of
point-landmarks. The test set is listed in black font. The training sequences,
for which all available annotations were provided, are highlighted in red. The
test set in green was released shortly before the MICCAI conference.

Sequence info Acquisition info

Sequence Im.size Im.res. No. Im.rate Annotation Scanner Probe Freq.
[pix] [mm] frames [Hz] No. [MHz]

EMC-01 192x246x117 1.14x0.59x1.19 79 6 1 iU22 X6-1 3.2
EMC-02 192x246x117 1.14x0.59x1.19 54 6 4 iU22 X6-1 3.2
EMC-03 192x246x117 1.14x0.59x1.19 159 6 1 iU22 X6-1 3.2
EMC-04 192x246x117 1.14x0.59x1.19 140 6 1 iU22 X6-1 3.2
EMC-05 192x246x117 1.14x0.59x1.19 147 6 1 iU22 X6-1 3.2

ICR-01 480x120x120 0.31x0.51x0.67 141 24 1 Siemens SC2000 4Z1c 2.8
ICR-02 480x120x120 0.31x0.51x0.67 141 24 1 Siemens SC2000 4Z1c 2.8

SMT-01 227x227x229 0.70 97 8 3 GE E9 4V-D 2.5
SMT-02 227x227x229 0.70 96 8 3 GE E9 4V-D 2.5
SMT-03 227x227x229 0.70 96 8 2 GE E9 4V-D 2.5
SMT-04 227x227x229 0.70 97 8 1 GE E9 4V-D 2.5
SMT-05 227x227x229 0.70 96 8 2 GE E9 4V-D 2.5
SMT-06 227x227x229 0.70 97 8 3 GE E9 4V-D 2.5
SMT-07 227x227x229 0.70 97 8 2 GE E9 4V-D 2.5
SMT-08 227x227x229 0.70 97 8 3 GE E9 4V-D 2.5
SMT-09 227x227x229 0.70 97 8 3 GE E9 4V-D 2.5
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