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Preface

Non-invasiveness and high temporal resolution makes ultrasound (US) imag-
ing an attractive choice for tracking and tissue motion analysis. Clinical
applications include cardiac, respiratory and muscular motion estimation.
This challenge is concerned with tracking the motion of the liver during
free-breathing, with the ultimate aim of enabling motion compensation in
image-guided interventions and therapies.

A large number of relevant tracking strategies for US liver images have
been proposed, but it is hard to compare their performances. The Chal-
lenge on Liver Ultrasound Tracking (CLUST) 2014, held in conjunction with
MICCAI 2014, allowed for the first time the quantitative, direct comparison
of different tracking methods using the same tracking objective and valida-
tion strategy. CLUST14 successfully established the first reference tracking
performance and is still available as an open challenge 1.

This challenge expands and renews CLUST14. The dataset was increased
from 38 to 64 2D sequences and from 16 to 22 3D sequences. Annotations
were improved by manually labeling landmarks on 10% of all frames by three
observers (instead of one) and taking the mean position. Additionally, the
quality of the annotations was ensured by visual inspection and corrections
if required. We had planned to also include annotations of the diaphragm or
liver boundary in the challenge. Yet we experienced high observer disagree-
ments and hence excluded these annotations to not compromise the ground
truth quality. Furthermore, in contrast to CLUST14, an on-site challenge
will be held during the conference satellite event to confirm the performance
of the methods on unseen images.

In details, we collected a dataset of 86 sequences of volunteers under free
breathing and released 64 sequences, provided by six groups (see pages 51-
53). The length of the sequences ranges from 4 seconds to 10 minutes and
acquisitions were done with different US scanners and settings. The dataset
is divided into two parts, according to the image dimension. The first part
is composed of 64 2D sequences, and the second part consists of 22 3D se-
quences, both with point-landmark annotations and from healthy volunteers.
The data were anonymized and distributed in the format of sequences of 2D
images (.png) or 3D images (.mha). The data were split into a training and
a test set. Training data (40% of all sequences) and part of the test data

1CLUST14 http://clust.ethz.ch/clust2014.html
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(40%) were available prior to the challenge (see pages 52-53). Annotations
were provided for the training set, to allow for some tuning of the tracking
algorithm. For the test set, the annotations of the first images were provided.
These needed to be tracked over time. The remaining 20% of the test data,
is distributed at the MICCAI CLUST event for on-site application of the
methods. This helped the organizers and participants to comment on algo-
rithm run-time, parametrization and tuning, flexibility, and feasibility for a
real application scenario. The details and results for the on-site dataset were
not included in this proceedings book, as they were available after the paper
submission deadline.

In response to the call for papers, we had 50 requests for access to the
data. A total of 6 papers were accepted to the workshop. These papers un-
derwent a peer-review process, with each paper being reviewed by 2 members
of the Organizing Committee. The revised papers, incorporating the review-
ers’ comments, are included in this proceedings book. During the workshop,
challenge participants were able to apply their method on new images and
present their research. Attendees benefited from discussions, learning about
different tracking techniques and gaining a perspective of the challenges and
potentials of US tracking.

We would like to express our sincere appreciation to the authors whose
contributions to this proceedings book have required considerable commit-
ment of time and effort. We also thank (in alphabetical order of surnames)
Jyotirmoy Banerjee from the Biomedical Imaging Group, Erasmus MC, Rot-
terdam, The Netherlands; Herve Liebgott from CREATIS INSA Lyon, France;
Frank Lindseth and Sinara Vijayan from SINTEF Medical Technology, Trond-
heim, Norway; Julia Schwaab from mediri GmbH, Heidelberg, Germany; and
their colleagues for providing data and annotations. Without their help this
workshop would not have been possible.
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Liver Ultrasound Tracking using a Learned
Distance Metric

Daniel Nouri and Alex Rothberg

4Catalyzer, Inc.,
Guilford CT 06437, USA,

{dnouri,arothberg}@4catalyzer.com

Abstract. We present a method for landmark tracking in long liver
ultrasound sequences. We employ metric learning, and train a convo-
lutional neural network to map from pixel intensities of grayscale ul-
trasound image patches into a low-dimensional embedding space such
that patches showing the same landmark at their center have a small
L2 distance in the embedding. We then locate landmarks throughout a
sequence of ultrasound frames by extracting patches from a search win-
dow inside the target frame and finding the patch in the target frame
that in the embedding space minimizes the distance to a number of
template patches containing the landmark and extracted from previous
frames. Our approach had a mean tracking error of 2.83mm, with 38 of
62 tracked points having an error of less than 1.5mm.

Keywords: ultrasound, tracking, medical imaging, learned distance met-
ric, CLUST15

1 Introduction

Ultrasound (US) imaging is a widely used medical imaging technique due to
its relatively low-cost components, fast acquisition speed, and safe, non-ionizing
radiation. In addition, because it also offers high temporal resolution images in
real-time, US is often used for tissue tracking during image-guided intervention
and therapy.

Tracking the motion of tissue in an ultrasound sequence is complicated by
respiratory motion, image noise, and the relatively long (often more one minute)
acquisitions. Tracking is further complicated by large changes in shape of the
tracking target, particularly when anatomical targets are not captured in plane.
Long acquisitions are particularly difficult due to high likelihood of both patient
and operator motion. In many cases, the US capture probe is handheld.

In this paper, we present a new tracking scheme based on a distance metric
for US image patches that is learned from data. We use the learned distance
metric to compare candidate square image patches with patches extracted from
a target reference frame. The algorithm requires a training phase in which the
distance metric is learned from raw pixel intensity values, for all device types
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simultaneously. No further parameterization is needed when applying the algo-
rithm to previously unseen data. We evaluated this new scheme participating in
the MICCAI CLUST15 [2] liver ultrasound tracking challenge.

1.1 Related Work

Several systems that use deep neural networks to learn distance metrics have
been proposed for applications such as face verification and signature verifica-
tion. Training for verification instead of classification has the advantage that
fewer labeled examples are needed, and that systems can naturally generalize to
categories previously unseen [7,8,20].

The very similar CLUST14 challenge saw a wide range of proposed meth-
ods ranging from non-linear image registration, and long-term and short-term
template matching, to Bayesian methods. None of the proposed methods incor-
porated deep neural networks as part of their solution [17]. However, the winner
of the MICCAI 2013 Grand Challenge on Mitosis Detection was a system using
a deep neural network at its core [10].

2 Materials and Methods

2.1 Ultrasound Data

2D B-mode ultrasound data was provided as part of the MICCAI 2015 Chal-
lenge on Liver Ultrasound Tracking (CLUST) [2]. The data were cine images of
human livers. The data came from a number of patients and institutions (CIL,
ETH, ICR, and MED datasets) and were acquired by one of five ultrasound sys-
tems (Ultrasonix MDP, Siemens Antares, Elekta Clarity - Ultrasonix, DiPhAs
Fraunhofer and Zonare z.one). The data had varying spatial (0.28 – 0.55mm)
and temporal resolution (11 – 23Hz) and sequences lasted from 59.4 – 328.6s.
The number of annotations per image sequence ranged from one to five liver
features.

24 of the 48 datasets, totaling 53 target annotations, were provided with
ground truth annotations (of liver blood vessels) throughout the acquisition se-
quence. Approximately 10% of the frames had the locations of the tracking points
annotated. A total of 62 points had to be tracked in the test-set where only the
initial position of liver features (blood vessels centers) was given.

Annotations were provided in the following form: frame number, x-pixel (lat-
eral position) and y-pixel (axial position).

2.2 Distance Metric Learning

Given a sequence of ultrasound images I0...N , along with an annotated landmark
L given by its position c0 ∈ R2 in the first frame I0, the problem is to locate
the center positions c1...N of the given landmark in all subsequent frames I1...n.
We solve the problem by training a convolutional neural network (ConvNet)
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that learns a function GW (p) to map ultrasound image patches p into to a low-
dimensional space such that the distance metric

DW (pi, pj) = ||GW (pi), GW (pj)||2 (1)

is small if pi and pj show the same landmark at their center and large oth-
erwise.

The weights W of mapping function GW are learned using stochastic gradient
descent and the following loss function originally proposed in [14],

L(pi, pj , sij ,W ) =

{
1
2 DW (pi, pj)

2 if sij = 1,
1
2 max(0,m−DW (pi, pj))

2 if sij = 0
(2)

where sij = 1 for a pair of patches (pi, pj) that show the same landmark at their
center and sij = 0 otherwise. m is a margin constant used to limit the penalty
for dissimilar pairs; it was set to 0.1.

2.3 Training Data

For training, we form pairs of square patches (p1, p2) of the same landmark
extracted from different frames using the ground-truth annotations. These are
the pairs for which the distance DW (p1, p2) is learned to be small.

In addition, we form twice as many pairs of patches for training where p1
contains the same landmark as p2 but shifted away from the center by at least
4 and by at most 46 pixels in both dimensions uniformly at random. We also
train with some pairs where both patches show different landmarks taken from
the same sequence. These are the pairs for which the distance is learned to be
big.

Because our mapping function GW has many learnable parameters (1,865,278
in our best configuration), and thus tends to show high variance, we augment
our training data by randomly flipping patches in both vertical and horizontal
directions.

We pre-process all ultrasound image frames with a small-size median filter.
All extracted patches are of size 46 x 46, which we determined empirically to be
optimal. We use all available training data to learn the parameters of GW .

2.4 Convolutional Neural Network Architecture

A ConvNet is a feed-forward neural network that uses successive pairs of convo-
lutional and max-pooling layers, followed by fully connected layers. The input
to our ConvNet is raw pixel intensities, the output is an embedding in low-
dimensional space. All weights W of the network are learned from scratch using
the contrastive loss function in (2). The weights are randomly initialized using
Glorot initialization as described in [12]. Weights are updated during training
using Nesterov’s Accelerated Gradient [18]. We train a single network that learns
the weights of GW for all sequences and device types simultaneously. Table 1
lists the architecture of our ConvNet.
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Our decision to use a ConvNet to implement GW is motivated by the recent
successes of using ConvNets in mitosis detection, and in computer vision tasks
in general [10]. Through the use of learning curves in our experiments we’ve
determined that our ConvNet is still well in the regime where using more training
data (and possibly more aggressive data augmentation) leads to a linear increase
in performance. Another intriguing property of ConvNets is that they can learn
from raw pixels directly, and thus eliminate the often tedious task of engineering
features and choosing dataset-specific parameters by hand. The max pooling
layer calculates the max value of a particular feature over a region of the image.
This ensures that the same result is obtained even when images features undergo
small translations.

Table 1. 8-layer architecture of our ConvNet with a total of 1,865,278 learnable param-
eters. Layer type: I - input, C - convolutional, MP - max-pooling, MO - maxout [13],
FC - fully-connected.

Layer Type Maps and Neurons Filter size

0 I 1Mx46x46 —
1 C 32Mx46x46 5x5
2 MP 32Mx25x25 2x2
3 C 64Mx23x23 3x3
4 MP 64Mx12x12 2x2
5 FC 200 1x1
6 MO 50 4x1
7 FC 50 1x1

2.5 Template Patches

In a given ultrasound frame Ii, we predict the center ci ∈ R2 position of the
tracked landmark L by finding a target patch p that minimizes

DW (p, t0) +

∑i−1
k=i−K DW (p, tk)

K
(3)

for K + 1 template patches t extracted from previous frames and showing
landmark L. See Figure 1 for examples of the distance map created by the
window search.

Template patch t0 is extracted from the initial frame I0 with its center po-
sition c0 provided by the human annotation. Patches ti−K . . . ti−1 are extracted
each from K previous frames Ii−K . . . Ii−1 with their center at the position of
the tracking algorithm’s previously predicted landmark position yi ∈ R2. Thus,
to be able to extract template patches for use in frame Ii, we must first predict
the position y of L in frames Ii−K , . . . , Ii−1.

Through our experiments, we determined K = 10 to be the optimal number
of template patches to use from previous predictions.
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Fig. 1. Distance map created by the window search; the dark blue region represents the
most similar match. Performed on the second point in ICR-01 on frames 1, 81 . . . 1121.

2.6 Search Window

When looking for a patch p that has minimum distance to template patches t
for landmark L as defined in Section 2.5, we only consider patches in the target
frame Ii that have their center pixel within a defined square search window.
This search window is searched through exhaustive search and itself centered at
the predicted position yi−1 of landmark L in the previous frame Ii−1, or at the
initial annotation c0 for i = 1.

The predicted position yi is defined by the center pixel of the patch p that’s
found to have minimum distance. We chose the width of the search window to
be 24 pixels, which allows tracking to compensate for errors in previous frames.

Fig. 2. Histogram of mean tracking errors. 38 of 62 landmarks in the test set have a
mean tracking error of 1.5mm or less.

3 Experimental Results

We implemented the proposed approaches and methods in the previous section
using Nolearn [3] and Lasagne [1] in Python. Lasagne uses Theano [6] for execu-
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tion, which allows us to use GPUs for computations. We ran all execution using
the Amazon Web Services (AWS) g2.2xlarge instances1.

Each version of the network architecture was trained using a single g2.2xlarge
instance though various network architectures and hyperparameters settings
were often trained in parallel using multiple machines2. The sliding window
search was performed using a single g2.2xlarge instance though each sequence
could be made to run in parallel.

The tracking results for each sequence group are shown in Table 2. The
results in CIL, MED-1 and MED-2 were relatively consistent with small standard
deviations, 95th percentiles and maximum values. For the ETH and ICR examples,
there were examples where the search “got lost” and the algorithm returned a
window very off from the desired target. For example the mean error on ICR-07 2

was 18.55mm. Figure 2 visualizes a number of outliers in the mean test error
distribution.

The computational time to learn the distance metric was approximately 1.5
hours for the best performing models. Training differs slightly depending on the
exact network architectures used and the number of training epochs needed for
sufficient convergence. Once the distance metric was learned, the same metric
was applied to each sequence group. The processing time for the search was
100msec / annotation / frame. This time was per learned distance metric. Given
that we were performing an ensembling where two motion vectors were averaged
in order to produce the final result, the actual time was double that: 200msec
/ annotation / frame though the two estimations can be performed entirely in
parallel. Real-time performance of our system is well within reach considering
that the GPUs we used in our experiments are about four times slower than the
most modern GPUs available.

Table 2. Tracking errors for the 2D point-tracking test data.

Mean Std 95% Min Max
[mm] [mm] [mm] [mm] [mm]

Sequence set
CIL 1.65 0.97 3.49 0.01 5.13
ETH 2.61 4.33 13.35 0.01 27.70
ICR 5.80 8.86 29.01 0.03 39.39
MED1 2.13 2.25 7.10 0.01 16.83
MED2 1.53 1.03 3.83 0.02 6.41

All sequences 2.83 4.86 13.13 0.01 39.39

1 http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using_cluster_

computing.html
2 The cluster of machines was managed using StarCluster.
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4 Conclusions

In this paper, we proposed a method of tracking target tissues in long (over one
minute) 2D ultrasound sequences of liver. The proposed method uses a ConvNet
to learn a distance metric which can then be used in a sliding window fashion
to determine the motion vector of the tissue from the previous to the current
frame. The experimental results were obtained using 24 sequences of ultrasound
with 62 annotated landmarks. The results showed the proposed method has
good average accuracy, though there were circumstances where the technique
“got lost” and produced results far from the target.

The current implementation is not computationally optimal. The embedding
of each window is computed independently, resulting in many redundant con-
volution operations. Using “fully convolutional networks” instead, we should be
able to reach real-time performance easily [16].

Because our ConvNet-based embedding function has many degrees of free-
dom, it exhibits high variance. In future work, we aim to reduce variance by
averaging the outputs of multiple networks trained on the same data but with
different random initialization. We’re also confident that running the embedding
function on patches flipped vertically and horizontally and averaging results
would lead to better generalization. These two techniques would both come at
the expense of slower runtime performance.

When calculating a distance map inside a given search window, we observe
that the map tends to be quite noisy. In future work, we want to look at smooth-
ing functions to be able to more robustly find the correct center pixel.
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Tanner, C.: The 2014 liver ultrasound tracking benchmark. Physics in Medicine
and Biology 60(14), 5571 (2015), http://stacks.iop.org/0031-9155/60/i=14/

a=5571

18. Nesterov, Y.: A method of solving a convex programming problem with conver-
gence rate O(1/k2). Soviet Mathematics Doklady 27(2), 372–376 (1983)

19. Preiswerk, F., De Luca, V., Arnold, P., Celicanin, Z., Petrusca, L., Tanner, C.,
Bieri, O., Salomir, R., Cattin, P.C.: Model-guided respiratory organ motion pre-
diction of the liver from 2D ultrasound. Medical Image Analysis 18(5), 740–751
(Jul 2015), http://dx.doi.org/10.1016/j.media.2014.03.006

20. Sun, Y., Wang, X., Tang, X.: Deep learning face representation by joint
identification-verification. CoRR abs/1406.4773 (2014), http://arxiv.org/abs/

1406.4773

21. Vijayan, S., Klein, S., Hofstad, E., Lindseth, F., Ystgaard, B., Lango, T.: Validation
of a non-rigid registration method for motion compensation in 4d ultrasound of the
liver. In: Biomedical Imaging (ISBI), 2013 IEEE 10th International Symposium on.
pp. 792–795 (April 2013)

12

http://dx.doi.org/10.1007/978-3-642-40763-5_51
http://dx.doi.org/10.1007/978-3-642-40763-5_51
http://dx.doi.org/10.1007/978-3-642-40811-3_65
http://dx.doi.org/10.1007/978-3-642-40811-3_65
http://stacks.iop.org/0031-9155/60/i=14/a=5571
http://stacks.iop.org/0031-9155/60/i=14/a=5571
http://dx.doi.org/10.1016/j.media.2014.03.006
http://arxiv.org/abs/1406.4773
http://arxiv.org/abs/1406.4773


Liver Ultrasound Tracking Using Kernelized
Correlation Filter With Adaptive Window Size

Selection

Satoshi Kondo

Konica Minolta Inc., Osaka, Japan
satoshi.kondo@konicaminolta.com

Abstract. We propose a method to track tissues in long ultrasound
sequences of liver. The proposed method is based on kernelized corre-
lation filter (KCF) and we introduce two extensions to KCF; adaptive
window size selection and motion vector refinement with template match-
ing. We compare KCF and the proposed method by using some training
sequences of 2D ultrasound and the mean tracking error can be improved
with the proposed method by up to nearly 3 pixels. The tracking per-
formance is also assessed on 19 test sequences of 2D ultrasound with 62
regions of interests. Mean tracking error is 1.09 mm.

Keywords: Ultrasound, Liver, Tracking, Kernelized correlation filter,
Template matching

1 Introduction

It is important to track a region of interest (ROI) to compensate motion to en-
sure accuracy of robot-assisted diagnosis [1], focused ultrasound surgery [2] and
dose delivery in radiation therapies [3]. Ultrasound is one of potential imaging
modalities for image guidance and has some advantages such as real-time imag-
ing, noninvasive and cheap comparing to other imaging modalities such as CT
and MRI.

Various methods have been proposed for tracking a moving object in a video
sequence. In recent years, tracking methods using discriminative approach have
been proposed and reported to exhibit high performance [4–6]. Especially, Ker-
nelized Correlation Filter (KCF) is known to show high performance despite its
high speed processing [7, 8].

KCF shows high tracking performance, but it has some problems such as,
(1) the user has to specify a region enclosing the target object to track, (2) KCF
emphasizes robustness than accuracy. For example, the criteria of true positive
is that the tracked position is within 20 pixels relative to the ground truth in
[7].

On the other hand, in medical applications, both robustness and accuracy
are required for tissue tracking. In this paper, we propose a tracking method of
tissues in long ultrasound sequences of liver. The proposed method is based on
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KCF and we introduce two extensions to KCF. The first one is adaptive window
size selection and the second one is motion vector refinement.

2 Overview of Kernelized Correlation Filter

In this section, we briefly explain KCF, which is a basis of our proposed method.
In KCF, when a target object to track is specified, a discriminative function is
calculated by kernel ridge regression using the image inside the region of the
target to track as a positive sample and the images in the surrounding region
of the target as negative samples. Since the positive sample and the negative
samples are expressed with a circulant matrix in KCF, the regression coefficient
vector in the kernel space is obtained by using Discrete Fourier Transform (DFT),

α̂∗ =
ŷ

k̂xx + λ
, (1)

where y is a regression target vector, 1 for an element corresponding to a positive
sample and 0 for an element corresponding to a negative sample，x is an image
patch in a tracked region, λ is a regularization weight in ridge regression, a hatˆ
and a star * denote the DFT of a vector and complex-conjugate, respectively. In
the case of two dimensional data and the dimension of x is M×N , the dimension
of y is also M ×N . Note that the tracking window, which is the size of x, has
2.5 times the size of the target to track in the implementation of KCF.

In case of Gaussian kernel, k̂xx′
is

k̂xx′
= exp

(
− 1

σ2

(
∥x∥2 + ∥x′∥2 − 2F−1(x̂⊙ x̂

′∗)
))

, (2)

where F−1 and ⊙ denote inverse Fourier transform and element-wise multipli-
cation, respectively.

In the detection phase, a regression function in Eq. (3) is calculated and the
position where the regression value is maximum is the tracked position.

f̂(z) =
(
k̂xz

)∗
⊙ α̂, (3)

where z is a image patch in a frame to track which has the same size with x．
Then, α̂ is re-calculated at the new tracked position in the next frame using

Eq. (1). In the implementation, however, α̂ is gradually updated as in Eq. (4).

α̂′
t+1 = βα̂t+1 + (1− β)α̂t, (4)

where β is a weight for the interpolation.

3 Proposed Method

3.1 Overview

It is desirable that a target area in the object tracking is set to enclose the target
object in the first frame by a user. However, in some cases, the user may specify
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Fig. 1. A flowchar of the proposed method.

only the center position of the target object. In such cases, the tracking system
has to decide the region of the target object to successfully track the object. Our
proposed method is based on KCF and the size of the tracking window should
be set in consideration of the following two aspects. The first one is the size of
the tracking target object and the second one is the amount of motion of the
target object.

In KCF, a discriminative function is determined using the image inside the
region of the target object as a positive sample and the image in the surrounding
region of the target object as negative samples. Therefore, it is desirable that the
image of the target object and the image in the surrounding region have different
texture. KCF calculates the correlation in the Fourier domain in the tracking
process as described in Section 2. That means the amount of the motion should
be within the area of the Fourier transform which is the same as the size of the
tracked window. Also, the ultrasound images of the liver have the characteristic
that the motion is approximately periodic which is induced by respiration.

In the proposed method, the size of the target object and the maximum
amount of motion are obtained by using initial frames during about one breath-
ing cycle (Step 1). This is a kind of calibration phase. The size of the tracking
window is decided by using the size of the target object and the maximum value
of the motion vectors (Step 2). In the subsequent frames, tracking is performed
with the tracking window (Step 3).

Fig. 1 is a flowchart of the proposed method. We will describe the details of
each process in the following sections.

3.2 Tracking using fixed window size for initial frames (Step 1)

In Step 1, tracking is performed by KCF with a predetermined size of the tracking
window at first for each frame. The predetemined window has a rectangular area
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centered at the point designated by the user to the target object. Then, in order
to improve the tracking precision, the template matching is performed for a
narrow search region around the position detected by KCF. We use normalized
cross correlation to evaluate the template matching.

Note that the learned discriminative function is gradually updated in KCF as
mentioned in Section 2. Also, we do not update the template and use the same
template for each frame in the template matching. The template is surrounding
area of the target object in the first frame. The reason is to use the template
obtained in the first frame for each frame is to avoid drift. Template matching
is performed only in the region of around ± 2 pixels of the positions obtained
by KCF. When the maximum normalized correlation value is greater than a
threshold Cth, the result of the template matching is adopted. Otherwise, the
tracking result of KCF is adopted without refinement. The area of performing
the template matching is decided empirically.

Also, we estimate the size of the target object in every predetermined frame.
Since the target object is a tissue such as blood vessels or tumors, the size of the
target object is determined by the ellipse fitting in the proposed method.

We repeat the above tracking process for each frame and analyze the temporal
history of the tracked positions. When the target object reaches the right (or
left) end two times, we determine that one respiratory cycle has been passed.
When it is determined that one respiratory cycle has been passed, the process
proceeds to Step 2.

3.3 Refinement of region size (Step 2)

In Step 2, the size of the tracking window is determined using the amount of
the motion obtained from the tracking results and the size of the target object.
The size of the tracking window is a larger value of γ1 times of the maximum
value of the amount of motion between adjacent two frames and γ2 times of the
median value of the object size (major axis). The values are decided for width
and height of the tracking window separately. The width and the height of the
tracking window are multiples of 8, the minimum value of the width and the
height is 16 pixels, and the maximum value is the initial tracking window size.
When there are multiple tracking targets in a sequence, the sizes of the tracking
windows are decided for each target.

3.4 Tracking using refined window size (Step 3)

In the subsequent frames, tracking with KCF and template matching is per-
formed using the tracking window size determined in Step 2. When the target
window size is changed in Step 2, α̂ and x̂ in KCF and the size of the template
used in the template matching should be changed. This is performed using the
template used in Step 1, which is an image patch around the target object in
the first frame. Specifically, for the template matching, the template is revised
by extracting the center area of the initial template. The updated template is
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Table 1. Tracking results for the 2D point-tracking training data. The numbers show
the tracking errors in pixels.

SequenceName
KCF

Mean Maximum

Proposed

Mean Maximum

CIL-02 #1 3.00 6.50 2.52 5.81
ETH-05-2 #2 6.51 28.98 3.67 27.06
ICR-04 #2 2.38 8.50 1.77 6.50

MED-05-1 #1 5.93 14.64 5.30 12.71

converted to α̂ and x̂ for KCF. Thus, α̂ and x̂ is reset at the beginning of Step
3.

The subsequent process, tracking with KCF and the template matching, is
the same as in Step 1.

4 Experimental Results

We evaluated the performance of the proposed method using the 2D point-
tracking training data of liver ultrasound. The training data was provided by
organizers of CLUST 2015, MICCAI Challenge on Liver Ultrasound Tracking.

Our implementation is based on the open source MATLAB code (version
2) at http://home.isr.uc.pt/∼henriques/circulant/. In the experiment, we used
the following values for parameters. The feature is gray scale pixel value. Note
that we compared the tracking performance with gray scale feature and His-
togram Oriented Gradient (HOG) feature [9] as a preliminary experiment and
the gray scale feature showed better performance for liver ultrasound sequences,
while HOG feature shows much better performance than gray scale feature for
surveillance and sport videos in [7]. The kernel type in KCF is Gaussian kernel
with σ = 0.2. We selected a Gaussian kernel based on preliminary experimental
results. λ in Eq. (4) is 10−4. β in Eq. (4) is 0.0075, which is one tenth of the
default parameter in case the feature vector is the gray scale feature in KCF.
The initial tracking window and template size and the threshold Cth are 96×96
pixels and 0.8, respectively. The object size is estimated every 5 frames in Step
1. In Step 2, γ1 and γ2 in step 2 are 8 and 4, respectively. These values were
decided empirically. We used the same parameters for all the sequences.

We compared the tracking performance of the proposed method with KCF
in which the tracking window size is fixed at 96×96 pixels. Table 1 shows the
results for some the 2D point-tracking training sequences. In Table 1, mean and
maximum tracking errors are shown for KCF and the proposed method. Note
that the ground truth is not given for all frames for the training sequences and
the errors are calculated only for the frames the ground truth is given.

As can be seen in Table 1, the proposed method shows better tracking per-
formance comparing to the original KCF. The proposed method can improve
the mean errors by up to nearly 3 pixels and the maximum errors by nearly up
to 2 pixels.
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Table 2. Tracking results for the 2D point-tracking test data. The numbers show the
tracking errors in millimeters.

SequenceName Mean Standard deviation 95th percentile Minimum Maximum

CIL 2.21 1.82 6.00 0.10 8.05
ETH 0.83 0.77 2.55 0.01 10.94
ICR 0.90 0.64 1.99 0.01 7.80

MED1 1.64 2.27 5.47 0.02 17.29
MED2 1.37 1.19 4.26 0.01 7.64

All 1.09 1.35 3.07 0.01 17.29

The tracking results for each sequence group (CIL, ETH, ICR, MED1 and
MED2) in the test dataset are shown in Table 2.

As for computational time, we measured the processing time using a com-
puter with an Intel Core i7 3.3GHz CPU (6 cores) and 64GB memory. We im-
plemented the proposed method with MATLAB. The average processing time
per target object and per frame in Step 1 and Step 3 for each sequence in the
proposed method was from 106 to 155 msec and from 75 to 120 msec, respec-
tively. For comparision, The average processing time per target object and per
frame for each sequence in the original KCF was from 23 to 58 msec. The av-
erage additional time in the proposed method comparing to the original KCF
was 59 msec per target object and per frame. We think the processing time can
be improved if we implement the template matching in the proposed method by
C++, and it’s a future item.

5 Conclusion

In this paper, we proposed a tracking method of target tissues in long ultrasound
sequences of liver. The proposed method is based on kernelized correlation fil-
ter (KCF) and we introduce two extensions to KCF for improving the tracking
accuracy. The experimental results showed the proposed method had better ac-
curacy comparing to the original KCF. Mean tracking error with the proposed
method for test sequences of 2D ultrasound was 1.09 mm.

Items for future research are to improve the accuracy of tracking tissues near
the boarder and expand the proposed method to 3D ultrasound.
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Abstract. Planned delivery of focused therapy is adversely affected by
internal body motion, such as from breathing, which could be mitigated,
if tracked accurately in real-time. By extending an algorithm for superfi-
cial vein tracking, we hereby present a robust real-time motion tracking
method for 2D ultrasound image sequences of the liver. The method
leverages elliptic and template-based models of vessels in the liver, cou-
pled with a robust optic-flow framework. Potential drifts in this iterative
tracking are corrected when the breathing phase is close to that of the
initial reference frame, detected by comparing the appearance of tracked
feature regions. Results are evaluated on the CLUST-2015 dataset, with
1.09mm mean and 2.42mm 95th percentile errors in 24 2D test sequences
collected from four different centers.

1 Introduction

During radiation therapy and focused ultrasound treatment, patient motion ad-
versely affects the planned irradiation of the target anatomy. Ultrasound tracking
can provide a real-time solution to observe and mitigate such motion; thereby
requiring smaller treatment margins, minimizing exposure to healthy tissue.

Tracking in ultrasound (US) is challenging due to low US signal-to-noise ratio
and changes in landmark appearances in time. Vessels are robust landmarks,
easier to identify and track in US, since they have high US contrast and well-
defined shapes. We presented earlier an algorithm to identify and track superficial
veins in the forearm, for the measurement of peripheral venous pressure [2,3].
In that work, large motions caused by hand-held manipulation of the probe, as
well as veins collapsing meanwhile, were to be tracked, for which skin pressure
measurements provided a surrogate to identify vein collapses and assist in their
tracking. This method, when applied as given in [3] (with modifications to fit
the liver images), fails entirely in 33% of the CLUST-2015 training sequences,
while achieving a mean error of 1.32mm for the rest.

Since the vessels do not compress in the liver case and motion is known to be
repetitive, we have hereby extended the method of [3] by (i) reinitializing track-
ing with the reference frame when iterative tracking is poor; (ii) detecting and
taking into account the shadowing from ribs and poor skin contact; (iii) allowing
for features to go temporarily out of the US view or disappear in the shadow;
(iv) removing reliance on additional pressure readings and the interactive user
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input/correction in the venous-pressure case; and (v) adapting for curvilinear
image acquisition. In particular, a more sophisticated motion tracking and a
template-based resetting mechanism are introduced to recover from drift and er-
roneous tracking, while considering the repetitive motion. The Star-based edge
detection [5,6] and template-based vessel tracking are employed similarly to [3].
The proposed algorithm was evaluated on a set of 2D image sequences provided
by the CLUST-2015 challenge (http://clust.ethz.ch).

2 Methods

2.1 Motion Tracking

We use Lucas-Kanade method [7] for motion estimation between frames. The
method takes a set of points {p} in one frame and finds their corresponding
positions {p′} in the next frame. To limit motion estimation to the US field-of-
view and to exclude shadowed areas, a motion mask is employed. The mask is
built by binarizing the current frame fi with a small threshold (5 in our setup)
and median filtering the output with a 10 × 10mm2 kernel to remove islands,
c.f. Figs. 1(a) and 1(b). Median filter was implemented by a box-filter for speed
considerations, exploiting the binary nature of the image.

We combine two tracking information: Iterative Tracking (IT) finds motion
between consecutive frames fi−1 and fi for individual points-of-interest (POI),
whereas Reference Tracking (RT) finds motion from the (initial) reference frame
f0 to fi for all POIs at once. RT is able to recover POI positions when motion
cycle, induced by breathing, is in the same phase as the reference, while IT helps
tracking points during the rest of the motion cycle. The points {p} are selected
on a square regular grid centered around each POI (with a grid separation set to
5mm herein). Starting from 3×3, the grid size is increased to {5×5, 7×7, . . .}
to ensure a required number of tracking points (100 for RT and 10 for IT) fall
inside the motion mask. IT uses current (previous-frame) positions of the POIs
{mp}, while RT uses the reference POI positions {mp0}.

Motion estimation in US is highly error-prone; hence, predicted point-wise
motion vectors are filtered as follows. In IT, the per-point tracking error (PPE)

(a) (b) (c) (d)

Fig. 1: Initial US frame (a), corresponding motion mask (b). Iterative (c) and
reference (d) motion tracking grids, where discarded motion vectors are colored
in pink and POIs shown as white circles.
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returned by the Lucas-Kanade method is used to discard error-prone pairs of
points determined by a pixel error threshold of 6. Regardless of error, a minimum
of 5 tracking points {p} are kept. From remaining point pairs {p → p′}, a 6 DOF
affine transform is computed as the local motion estimation for each IT-tracked
POI. For filtering RT, the points are checked for bi-directional consensus, i.e. the
consistency of motion from first to current and back to first frame, f0 → fi → f0.
Consider this motion yields the following locations {p → p′ → p′′}, then the point
is kept, iff |p−p′′|<4mm. Next, the RT points are also checked for consensus with
median motion direction, i.e. kept iff (p′ − p) ·med({p′ − p}) > 0. If more than
60% of original RT points are filtered in the above process, then RT is considered
invalid. In RT, a 6 DOF affine transform is computed from the combined set
of RT point-pairs in the entire frame as a global motion estimation w.r.t. the
reference frame. See samples of motion estimation grids in Figs. 1(c) and 1(d).

2.2 Vessel Size and Position Refinement

From the POI positions given in the refference frame, we first use a set of binary
templates of different sizes to estimate the initial vessel size e0 by template-
matching, similarly to the initialization/detection step in [3]. If Normalized Cross
Correlation (NCC) of the matched template score for a POI is smaller than a
threshold (herein, 0.3 within a [0..1] NCC range), then this POI is considered
to be a non-vessel structure; and, as such, its position is tracked only by RT
and IT (mpi), completely avoiding vessel-based treatments and later-described
Template-based Reset. Otherwise, it is concluded to be a vessel and treated
similarly to [3]: For relatively larger vessels, the Star edge-detection together
with dynamic programming and ellipse fitting is used. For smaller vessels with
difficult to detect edges, template-matching is used with binary templates of hy-
poechoic ellipses overlaid on hyperechoic backgrounds. We use an axis-aligned
ellipse representation for vessels as e = [cx, cy, rx, ry]

T , where cx and cy denote
ellipse center coordinates and rx and ry are the semi-axes (radii) along corre-
sponding axes. Although the vessels in the liver are not necessarily axis-aligned,
this constraint remaining in the method from earlier venous application still al-
lows for satisfactory tracking, meanwhile providing speed gain by reducing the
number of templates.

For each frame fi, the ellipse center (cx, cy)i is transformed using the affine
IT transform of the corresponding POI. Then, the center and radii are refined
using (a.) the Star method, when (ry)i>10 px, or (b.) binary template-matching,
otherwise. The center refinement is restricted to 2× 2mm2 around the previous
center (cx, cy)i, and the radii are permitted to change up to 2mm per frame.
The vessel size is restricted in each axis to be within [75..120]% of its initial size
in the reference frame to increase robustness to false detections.

2.3 Template-based Reset

The initial reference frame f0 and the current frame fi are used to re-initialize
tracked POI positions, when the breathing/motion phase is the same as in the
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reference frame. For this, first an auto-correlation noise level is estimated in
the reference frame following initialization: An image patch of size 2(rx, ry)0 +
(10mm, 10mm) centered at (cx, cy)0 is taken from f0 and its NCC with shifted
versions of itself (to eight surrounding positions with ±0.5mm offsets) are com-
puted, with the minimum NCC score being our reset-threshold of self-similarity.

For each frame fi, the above reference POI patch is template-matched within
a region of (cx, cy)0 ± (10mm, 10mm), where the position of the best match is
reported as a position reset candidate tpi, iff its NCC score is larger than the
reset-threshold determined for that POI as described above.

2.4 Motion Tracking Recovery

Fig. 2 presents an overview of per-frame tracking. For each frame fi, RT and IT
yield affine transforms Ari and {Aii}, respectively, which are used to track points
without any vessel assumptions (e.g., for non-vessel structures). Additionally,
{Aii} are used to update positions of vessel representations {ei−1}. Combined
with the Template-Based Reset, a best ellipse estimate is then picked and its
position is refined further. Alg. 1 gives algorithmic details of tracking recovery
stages for improved robustness. Each stage is further explained below.
Updating Motion Tracked Points: Kalman filtering [1] is used for tracking
POI locations, when RT is valid. Kalman-filter state is reset, if RT fails.
Picking Best Position: Tracking is switched from vessel tracking in Sec. 2.2
to pure motion-tracking by IT, if the POI moves outside the image or into a
shadowed area; defined by a visibility-mask constructed from the earlier motion
mask by including only shadowed areas, which extend all the way down to the
far-side of the image. A vessel is considered not-visible, if more than half of the
bounding box of a vessel representation ei are outside this visibility-mask. To

fi
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Fig. 2: Algorithm overview.
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Algorithm 1 Motion Tracking Recovery

1: for each mpi−1 in {mpi−1} do ▷ Updating Motion Tracked Points
2: if Is Valid(Agi) then
3: mp∗i ← Agi ·mpi−1

4: mpi ← Update Kalman Filter(mp∗i )
5: else
6: mpi ← Ali ·mpi−1

7: Reset Kalman Filter(mpi)

8: for each (e′i, e
′′
i , tpi,mpi) in {e′i, e′′i , tpi,mpi} do ▷ Picking Best Position

9: if Overlaps Vessel Mask(e′i) or Overlaps Vessel Mask(e′′i ) then
10: e′′′i ← e′i
11: else
12: cp← Position Of Highest NCC(Center(e′′i ),mpi,Size(e

′′
i ))

13: if Is Valid(tpi) then
14: cp← Position Of Highest NCC(cp, tpi,Size(e

′′
i ))

15: e′′′i ← (cp,Size(e′′i ))

16: for each (e′′′i ,mpi) in {e′′′i ,mpi} do ▷ Position Adjustment
17: (sx, sy)←Size(e′′′i )
18: s← 20 + (sx + sy)/2
19: d← | Center(e′′′i )−mpi|
20: a← 1

1+(d/s)2

21: cp←Center(e′′′i ) · a+mpi · (1− a)
22: ei ← (cp,Size(e′′′i ))

evaluate potential vessel locations and hence pick the best, a vesselness score
is computed for each potential location (cx, cy) by the NCC of a similar-sized
binary template and the image patch around that location.
Position Adjustment: Thanks to the robustness of the combined RT and
IT strategies, tracked points {mpi} stay relatively close to actual targeted POI;
nevertheless, not always track those with high precision. Conversely, the methods
in Sec. 2.2 can locate vessel center relatively precisely, although such tracking
may drift to adjacent hypoechoic structures in case of low local contrast or large
motion. Accordingly, as seen in Alg. 1, a final position-adjustment for vessel-like
POIs ensures that representations {ei} stay in close proximity of tracked points
{mpi} – which is a constraint relaxed for larger vessels.

For vessel-like POIs the center positions {(cx, cy)i} and, for others, the posi-
tions {mpi} are reported as the output tracked location.

3 Results and Discussion

The algorithm was implemented in C++ using OpenCV libraries. In particular,
calcOpticalFlowPyrLK function was used for motion estimation (window-size set
to 5mm and the number of pyramid levels to 5), matchTemplate for template
matching in CV TM CCOEFF NORMED mode, and KalmanFilter for RT po-
sition filtering (with measurementNoiseCov set to 200). Additionally, OpenMP
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was used to accelerate motion estimation by running RT and all ITs in parallel,
as well as for parallelization of template matching in Sec. 2.2.

The algorithm was evaluated on a Windows-based PC, equipped with an Intel
Core i7-3770K CPU @ 3.5GHz. The performance depends on (i) the acquisition
frame rate, since for larger frame-to-frame relative motion the motion estimation
takes longer; (ii) tracked vessel sizes, affecting Star or template-matching per-
formance; and (iii) the number of POIs to track. Table 1 presents per-sequence
tracking speed for all challenge sequences. The reason for the processing speed
to vary can be attributed to larger motion at lower acquisition frame rates as
well as different number of POI in given seeuences. It is, nevertheless, seen that
our processing is faster than the acquisition in all cases, with a latency of no
more than the acquisition frame rate.

All algorithm’s parameters were optimized using a training data set, provided
by the CLUST-2015 organizers. Table 2 presents tracking performance results
evaluated by CLUST organizers on their test data-set. Each sequence had up to
4 points marked in an initial reference frame, and the algorithm tracked them
through the rest of the frames (average image resolution is ∼447×552 px and
average sequence length is ∼3761 frames). The best average individual score in
the previous tracking challenge CLUST-2014 [4], on slightly smaller data-set and
with different annotators, was 1.33mm mean error (standard-deviation σ=1.94);
and the error for median fusion of six participants was 1.08mm (σ=1.42). Our
method is seen to perform with 1.09mm mean error (σ=1.75), superior to any
earlier results, and at a comparable level with the earlier consensus (median-
fused) tracking results.

It was observed in some sequences that frames were dropped; sometimes later
appearing as an out of context frame (probably injected later due to a buffer
overflow in the video capturing device, unless this is a data-preparation artifact).
Such frames were detrimental to motion tracking. Therefore, if the average per-
point error PPE in IT for a frame is over 3 times higher than the median average
PPE of last 5 frames, we simply skipped that frame and returned previous POI
positions.

Table 1: Per-sequence performance, where image acquisition rate is given in Hz,
and algorithm’s performance in Frames Per Second (FPS).

Sequence
CIL ETH

03 04 06-1 06-2 07-1 07-2 08-1 08-2 09-1 09-2 10-1 10-2

Hz 18 15 16 16 17 17 17 17 15 15 17 17

FPS 28.5 38.5 50.5 43.9 30.8 30.2 31.4 31.4 20.2 25.3 20.5 18.1

Sequence
ICR MED

05 06 07 08 06-1 06-2 07-1 07-2 07-3 07-4 08-1 08-2

Hz 20 21 23 23 20 20 20 20 20 20 11 11

FPS 48.8 50.7 44.5 36.7 22.6 24.5 29.3 28.2 25.7 21.0 16.2 17.5
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Table 2: Mean tracking error, standard deviation, 95th percentile, minimum and
maximum errors for each point of interest as well as average scores per sets of
points and total scores for all points in the CLUST-2015 2D datasets (all results
are in millimeters).

Individual Scores
POI Mean σ 95% Min Max

CIL

031 0.93 0.49 1.81 0.08 2.89
032 5.07 2.84 10.17 0.71 15.06
041 0.95 0.44 1.78 0.21 2.44
042 0.89 0.45 1.75 0.02 2.08

ETH

06-11 0.80 0.27 1.23 0.10 2.08
06-21 0.48 0.26 0.98 0.02 1.35
07-11 0.71 0.40 1.50 0.02 2.61
07-12 1.22 0.57 2.21 0.02 3.52
07-21 0.92 0.75 2.57 0.02 3.90
07-22 1.14 0.59 2.20 0.08 3.84
08-11 0.99 0.52 1.95 0.14 3.34
08-12 0.74 0.31 1.29 0.07 2.20
08-21 0.79 1.00 1.43 0.02 7.08
08-22 0.63 0.32 1.20 0.07 1.82
09-11 0.66 0.56 1.16 0.06 10.93
09-12 0.62 0.52 1.11 0.02 10.01
09-13 0.83 0.53 1.28 0.04 10.30
09-14 1.75 1.69 5.23 0.08 8.35
09-21 0.57 0.25 0.97 0.02 1.34
09-22 4.27 7.18 22.30 0.05 25.55
09-23 4.50 5.99 17.21 0.06 22.03
10-11 0.81 0.22 1.22 0.28 1.68
10-12 0.59 0.25 1.03 0.10 1.30
10-13 0.79 0.94 1.11 0.04 6.63
10-21 0.67 0.27 1.13 0.07 2.04
10-22 0.50 0.26 0.96 0.03 1.50
10-23 1.11 1.72 5.84 0.02 7.19

ICR

051 1.51 0.42 2.20 0.53 3.02
052 1.05 0.37 1.70 0.24 2.36
061 1.90 0.61 2.77 0.64 7.89
062 1.78 1.30 4.70 0.01 9.67
071 0.97 0.29 1.46 0.18 1.91
072 1.73 1.21 4.12 0.03 10.92
081 2.45 3.02 9.73 0.08 12.37
082 0.81 0.30 1.30 0.12 1.72
083 0.72 0.25 1.14 0.12 1.38

Individual Scores
POI Mean σ 95% Min Max

MED1

06-11 1.05 0.83 2.55 0.07 5.17
06-12 0.92 0.29 1.39 0.10 1.86
06-13 1.03 0.64 2.08 0.04 4.09
06-14 0.82 0.26 1.25 0.21 2.31
06-21 0.83 0.55 1.98 0.05 3.37
06-22 1.04 0.33 1.61 0.34 2.22
06-23 1.03 0.65 2.44 0.06 3.45
07-11 0.78 0.44 1.63 0.04 2.38
07-12 1.02 0.33 1.55 0.03 2.25
07-13 0.57 0.28 1.05 0.06 1.30
07-21 0.61 0.38 1.30 0.01 1.82
07-22 0.82 0.32 1.36 0.11 1.89
07-23 0.58 0.29 1.06 0.03 1.57
07-31 1.80 1.33 4.94 0.02 5.65
07-32 0.88 0.43 1.70 0.03 2.12
07-33 0.52 0.34 1.22 0.04 1.97
07-41 1.30 0.86 3.11 0.12 3.92
07-42 0.59 0.29 1.11 0.03 1.50
07-43 0.82 0.33 1.37 0.03 1.89
07-44 0.80 0.25 1.21 0.12 1.53

MED2

08-11 0.59 0.27 1.06 0.08 1.50
08-12 0.78 0.36 1.36 0.07 1.98
08-13 0.64 0.38 1.27 0.04 2.58
08-21 0.55 0.22 0.94 0.08 1.38
08-22 0.64 0.30 1.21 0.03 1.81
08-23 1.13 0.83 2.93 0.07 4.89

Average scores per set
POI Mean σ 95% Min Max

CIL 2.07 2.41 7.90 0.02 15.06
ETH 1.09 2.18 2.30 0.02 25.55
ICR 1.43 1.33 3.49 0.01 12.37

MED1 0.89 0.61 1.93 0.01 5.65
MED2 0.72 0.48 1.54 0.03 4.89

Average scores for all POI
POI Mean σ 95% Min Max

— 1.09 1.75 2.42 0.01 25.55
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There was a number of additional strategies that we attempted as described
below, without any significant gain on average tracking error. The organ motion
is rather coherent in nature, thus the relative positions of points do not change
substantially. We attempted to leverage this by restricting relative positions of
tracked points to one another, with some degree of relative movement allowed;
nevertheless this did not improve the average tracking performance. We also
attempted to reinitialize the reference frame when the tracking is judged to
be correct and the motion is in the same phase, in order to take into account
image appearance changes over time: For this, we used a simple approach of
reinitializing a new reference when when RT is valid and all points show low
error, however it was not possible to reliably detect incorrectly tracked points
and reinitialization would thus create even a higher drift. Consequently, the use
of only the initial reference frame (without any reinitialization) yielding the best
results on average.

4 Conclusions

Our proposed algorithm has shown superior results to methods published in the
previous CLUST challange. The average tracking error of 1.09mm is relevant in
liver motion-tracking for radiation and focused therapy applications. Our method
runs in real-time, with average latencies of [20..70]ms in the given sequences.
Aside from the given parametrization on the training dataset, no further per-
machine or per-sequence parameter tuning is required.
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Andre Hallack1, Bart lomiej W. Papież1, Amalia Cifor2, Mark J. Gooding2,
Julia A. Schnabel3

1 Institute of Biomedical Engineering (Department of Engineering Science),
University of Oxford, UK

2 Mirada Medical, Oxford, UK
3 Division of Imaging Sciences & Biomedical Engineering, King’s College London, UK

Abstract. A new framework for tracking of anatomically relevant land-
marks on 2D liver ultrasound sequences is presented in this work. It
combines logDemons nonlinear registration, which estimates the motion
within ultrasound sequences, with a moving window tracking method,
that propagates the estimated motion around the region of interest to
subsequent frames. Robust and accurate nonlinear registration is ob-
tained by employing the dense Scale Invariant Feature Transform as a
similarity measure. The proposed method was evaluated on 24 sequences
from the CLUST 2015 challenge. On a total of 62 landmarks within these
sequences, a mean target error of 0.91mm was achieved, surpassing the
previous challenge best performance, 1.44mm on CLUST 2014.

1 Introduction

Ultrasound provides real-time, safe and affordable imaging of soft tissues, mak-
ing it one of the most popular techniques for tracking of internal body structures.
This however comes at the expense of considerable amounts of noise. Hence, the
challenges of using this imaging technique lie very often on the image interpre-
tation. For real time tracking of structures, such as vessels and tumours, this
translates to the need of robust and equally efficient image processing methods.

In this work, an efficient solution for tracking of anatomical structures in liver
ultrasound sequences is presented. These images are subject to high amounts
of motion due to breathing, as well as noise and shadowing effects, causing
significant intensity changes in ultrasound structure and appearance [1]. Though
not persistent over time, high levels of nonlinear deformation are observed in liver
ultrasound. Consequently, motion correction approaches for anatomical structure
tracking cannot rely only on rigid registration methods, which are much faster
than nonlinear methods.

To solve this problem, we employed a tracking framework where only the re-
gions of interest are analysed, which greatly contributes to the system’s efficiency.
In this framework, nonlinear motion correction was performed using logDemons
diffeomorphic registration, which has already been successfully applied to liver
ultrasound tracking [2]. The main contribution of this work is the use of the
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Fig. 1. Sample reference ultrasound images and landmarks from the liver ultrasound
tracking challenge CLUST 2015.

dense Scale Invariant Feature Transform (dense SIFT) [3], a similarity metric
which has not yet been widely explored for medical imaging registration, but
has shown promise in computer vision problems to enhance distinctive features
of images and to be very effective on 2D image registration.

This paper is structured as follows: in Sec. 2 the method developed to track
annotations by registering liver ultrasound images is presented. This is followed
in Sec. 3 with a description of the CLUST 20154 data used evaluate the pro-
posed method, as well as the experiments conducted and their respective results.
Finally, Sec. 4 concludes this work.

2 Methods

The task addressed in the CLUST 2015 registration challenge can be described
as: given a sequence of temporal 2D images It, to estimate a set of annotation
positions x = M(t) over time based on the initial position M(1) of a relevant
structure. Here, x is a 2D spatial location and t the frame index in the se-
quence. Fig. 1 presents examples of ultrasounds images used in this work and
the landmarks being tracked.

In our method, we opted to use an image registration approach. Hence, by
computing a nonlinear transformation field Tt that registers I1 to It, M̂(t) can
be estimated as Tt(M(1)).

One of the difficulties of applying registration methods for such tasks is that
over long periods of time, large amounts of complex deformation and displace-
ment will occur in the images, hindering the registration process between far
apart acquisitions. On the specific case of liver ultrasound, nonlinear deforma-
tions are present for the observed structures, and thus nonlinear registration
is necessary to correctly identify the structures over time. However, over short

4 CLUST 2015, http://clust.ethz.ch/
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acquisitions, the main persistent type of global motion is rigid. Hence, we opted
first for a tracking method which propagates the estimated rigid motion at each
time point to the next frame, followed by accurate deformable registration.

The proposed method consists of a tracking framework (similar to [4]), where
the images are cropped around the expected annotation location (Sec. 2.1), and
a logDemons diffeomorphic nonlinear registration framework (Sec. 2.2), using
dense SIFT, which is a highly descriptive image transform (Sec. 2.3).

2.1 Tracking

The main concept of the tracking method used here was to perform image regis-
tration between cropped patches of the image sequence. Hence, from each frame
It, a square region Wt−1(It) is extracted. Wt−1 determines the position around
where this patch should be extracted. For the first frame, I1, this is straightfor-
ward, sinceW0 is the position of the initial annotationM(1). For each subsequent
frame It (t > 1), Wt−1 is extracted around the previously estimated annotation
location M̂(t − 1). An overview of this method is shown on Algorithm 1. Each
cropped patch has w x w pixels centred on the estimated annotated position.
This method does not propagate the whole nonlinear transformation from frame
to frame, but only the translation found for the annotation.

Fig. 2 presents an example of how the tracking framework progresses by prop-
agating the previous estimated annotation location to each subsequent frame.
This method was based on the work by König et al. [4]. Unlike that work, here,
for the cases where several different annotated structures are present in the same
imaging sequence, each annotation was tracked independently. Another differ-
ence to that framework is that no upper motion bounds were applied to the
obtained transformations.

Data: Liver ultrasound 2D sequence It and the initial landmark position
M(1).

Result: Sequence of estimated landmark positions M̂(t) for each
ultrasound sequence frame.

W0(I1)← crop(I1,M(1))
M̂(1)←M(1)
t← 2
while t < number of frames do

Wt−1(It)← crop(It, M̂(t− 1))
Tt ← register(Wt−1(It),W0(I1))
M̂(t)← Tt(M(1))
t← t+ 1

end
Algorithm 1: Tracking method for liver ultrasound landmarks.

2.2 Nonlinear Registration

For each image It of the sequence, its cropped subregion around the expected an-
notation position Wt−1(It) is registered to the reference cropped image W0(I1),
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Fig. 2. Sequence of images exemplifying the tracking framework used in this work. On
the first (reference) frame (a), a region of interest (red square) is cropped around the
known landmark (M(1) - red cross). This location is used as the region of interest for
the next frame (b), indicated by the red square. Image registration between these two
cropped regions (a and b - red squares) leads to a new estimation of the annotation
position (blue cross). For the next frame (c), the latest estimated annotated position is
used as the centre of the region of interest (blue square and cross) which will be used
to register to the reference region of interest (a), and after motion correction finds a
new position for the tracked structure (orange cross). This process is repeated for all
frames of an ultrasound sequence.

estimating the nonlinear transformation Tt. This transformation can then be
used to estimate the annotation position for the current frame, M̂(t) = Tt(M(0)).
For this nonlinear registration step we employed a diffeomorphic logDemons
framework [5]. Demons is an iterative registration method which finds a non-
regularised deformation field Tc by minimizing a similarity measure (Sim), but
at the same time computes a smooth regularised version (Ts) by applying a
Gaussian filter to it [6]. This is described by the following optimization problem:

T = arg min
Ts

(
Sim (W0(I1), Tc(Wt−1(It)) + Dist(Ts, Tc) + Reg(Ts)

)
(1)

where usually Dist(Ts, Tc) = ||Ts − Tc||2 and Reg(Ts) = ||Ts||2.
The logDemons version of this method ensures that the obtained transforma-

tion is invertible by restricting Ts to a subspace of diffeomorphisms (see details
in [5]).

2.3 Dense SIFT

Due to the intensities distortions mentioned in Sec. 1, most intensity-based mea-
sures of similarity lack the robustness to accurately register such ultrasound
image [2]. Hence, in this work, image intensities were not directly compared
during the logDemons registration steps. At each registration iteration, these
images were transformed using the dense Scale Invariant Feature Transform
(dense SIFT), a modified version of SIFT for dense image analysis [3,7,8]. This
method computes at each voxel a descriptor vector based on the histogram of
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gradients around its neighbourhood, generating a vector-valued images. This en-
hances distinctive characteristics of the ultrasound images and therefore allows
for more accurate registration.

Transformed images using dense SIFT (SIFT(I(x)) can then be locally com-
pared as the sum-of-square-differences (SSD) of the dense SIFT feature vectors
at each voxel x:

SimSIFT(I1(x), It(x)) =
∣∣∣∣∣∣SIFT(I1(x))− SIFT(T (It(x)))

∣∣∣∣∣∣2
2

(2)

This similarity measure is used within the logDemons framework (Eq. 1).

2.4 Parameters

The cropped region around each annotation was of 51 by 51 (w x w) pixels, the
size of this region was chosen to safely contain the whole annotated structure.
For nonlinear registration, the logDemons framework was applied with three res-
olution levels with 20 iterations at each level and transformation field smoothing
σdiff = 2 pixels, these parameters were not optimised for this problem. The SIFT
Flow library was used for dense SIFT with the standard parameters: cell size =
2 and 8 bins [3].

3 Experiment, Results and Discussion

The proposed framework was evaluated on 24 2D+t liver ultrasound sequences
(from 4 different scanners) designated for the CLUST 2015 challenge. These
sequences showed a spatial resolution between 0.30mm and 0.55mm, number of
frames ranging from 895 to 5586 and image rate from 11Hz to 23Hz. A total of 62
landmarks were provided (between 1 and 4 per sequence) at the initial frame to
be tracked over the whole sequence. The method was assessed by the challenge
organizers in terms of the mean target error (MTE) and standard deviation (σ)
between the computed and ground truth landmarks at selected frames, as well as
its 95th percentile. For each of these sequences, the detailed results are presented
in Tab. 1 and the overall outcome for each different scanner is shown in Tab. 2.

The MTE over all the sequences and landmarks was 0.91mm with standard
deviation of 1.66mm. These results were below the ones obtained on the previous
ultrasound liver tracking competition, CLUST 2014, where the best reported
result was 1.44mm MTE and 2.04mm stadard deviation on a similar dataset [9].

Despite using the same parameters for all analysis, the results obtained over
different scanners did not vary much; for the best case (dataset ETH) the MTE
was 0.59mm and for the worse case (CIL) it was 1.74mm. A noteworthy result
was for sequence MED 0.6-1, where for one of the annotations (2) this framework
clearly lost track of the landmark and showed very large errors. This highlights
one of the possible flaws of the proposed tracking framework: by reducing the
analysis to cropped regions around the expected annotation location we are
prone to failures if the motion between frames is close to the size of the region
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of interest (this effect is further illustrated in Fig. 3). Increasing the size of the
cropped regions could help reducing this error, however, it will lead to longer
computation time.

This algorithm was implemented on a single thread C++ program and tested
on a Intel i7-3770 computer with 3.40GHz, Ubuntu Linux 12.04 operating sys-
tem. The average frame processing speed was of 4.8 images per second, which is
close, but short of the acquisition rate of these sequences. Since the analysis for
each of the landmarks in a sequence is done independently, this speed is directly
proportional to the number of annotations, and the experiments showed a rate
of 11.8 frames per second per annotation.

Fig. 3. Illustration of an specific sequence (MED-06-1 - landmark 2) where the pro-
posed method loses track of the structure of interest. On (a) the estimated landmark
position (red cross) is centred on the structure of interest. On the subsequent frame (b)
there is a large displacement of the structure of interest, since now the estimated land-
mark position from the previous frame (red cross) and the cropped region of interest
(red square) do not contain the whole the structure. Here, the nonlinear registration
method fails to follow the observed displacement, and finds an erroneous new estimated
landmark position (blue cross).

4 Conclusions

In this work a new method for liver 2D ultrasound tracking was proposed and
evaluated within the CLUST 2015 challenge. Our method combined a nonlinear
registration method with a tracking method which focused only on the region
of interest around the tracked annotation, which then propagated the transla-
tional information from previous frames to the next frame. The nonlinear image
registration between the cropped reference and moving regions of interest (at
each frame) around the observed structure were performed using logDemons.
One of the main advantages of the proposed solution is the use of dense SIFT
as a similarity measure, a feature transform which led to better characterization
of the observed structures than standard intensity based measures.
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Table 1. CLUST 2015 2D tracking results of the 62 sequences. The outcome is mea-
sured in terms of the mean target error (MTE) and standard deviation (σ) in millime-
tres for each landmark in each sequence.

Results per landmark (mm)
Dataset MTE1 σ1 MTE2 σ2 MTE3 σ3 MTE4 σ4

CIL 03 1.51 1.53 2.92 1.04
CIL 04 1.35 0.50 0.95 0.47

ETH 06-1 0.68 0.29
ETH 06-2 0.73 0.36
ETH 07-1 0.34 0.16 0.47 0.29
ETH 07-2 0.43 0.23 1.08 0.46
ETH 08-1 0.45 0.18 0.62 0.38
ETH 08-2 0.62 0.21 0.90 0.44
ETH 09-1 0.59 0.59 0.47 0.52 0.64 0.93 0.54 0.56
ETH 09-2 0.45 0.24 0.86 0.46 0.91 0.43
ETH 10-1 0.40 0.23 0.47 0.25 0.41 0.18
ETH 10-2 0.41 0.29 0.56 0.29 0.57 0.57

ICR 05 0.66 0.22 1.02 0.54
ICR 06 0.74 0.25 1.29 0.54
ICR 07 0.66 0.27 0.84 0.63
ICR 08 0.58 0.48 0.37 0.22 1.03 1.66

MED 06-1 1.93 0.89 7.73 12.26 1.15 0.50 0.98 1.33
MED 06-2 1.64 0.92 0.73 0.51 1.59 1.05
MED 07-1 0.98 0.48 0.86 0.31 1.25 0.70
MED 07-2 1.00 0.48 0.65 0.43 0.79 0.30
MED 07-3 3.06 1.92 0.86 0.44 0.79 0.42
MED 07-4 2.85 1.67 0.60 0.38 0.83 0.39 0.36 0.18

MED 08-1 0.70 0.41 1.63 0.60 0.68 0.36
MED 08-2 0.95 0.37 1.07 0.47 2.57 1.32

The highly promising results under the CLUST 2015 challenge attested the
validity of the proposed method, showing a performance at least comparable
to state-of-the-art solutions and close to real-time speed. We also were able to
identify the main conditions where our framework fails at this tracking problem,
inciting the development of solutions which can handle well large deformations
between adjacent frames. Further development can also be made in terms of the
optimisation of the method’s parameters both to improve its accuracy as well
as to reach real-time processing of ultrasound sequences (including mult-thread
computing).
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Table 2. CLUST 2015 2D tracking results for each ultrasound scanner, as well as the
final overall result. The outcome is given by the mean target error (MTE), standard
deviation (σ) and minimum (Min) and maximum (Max) error in millimetres for each
scanner group.

Combined results (mm)
Dataset MTE σ 95th Min Max Scanner Type
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MED 1 1.53 3.25 3.99 0.01 35.20 DiPhAs Fraunhofer
MED 2 1.27 0.95 3.48 0.02 6.48 Zonare z.one

Overall 0.91 1.66 2.20 0.01 35.20
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Abstract. In ultrasound-guided procedures, such as high-intensity fo-
cused ultrasound or radio-frequency ablation, non-rigid clinical targets
may undergo displacements due to physiological motions. To cope with
that issue, the accurate estimation of the target motion is required in
order to adjust the position of medical tools. In this paper, we present a
robust approach that allows to track in real-time deformable targets in
3D ultrasound images. Our method combines visual motion estimation
with a mechanical model of the target. Our approach is evaluated on the
MICCAI CLUST’15 challenge 3D database. We achieved a mean track-
ing error of 1.78 mm with an average computation time of 350 ms per
frame.

1 Introduction

Over the last few years, minimally-invasive procedures, such as high-intensity
focused ultrasound (HIFU), or radio-frequency ablation (RFA) have gained sig-
nificant attention due to the shorter recovery time compared to conventional
therapies. However, the quality of these therapies can strongly depend on both
the deformations and displacements of the clinical targets since the surgeon needs
to continuously adjust the positions of medical tools. Thus, to ensure the target
visibility under ultrasound (US) image guidance, several target tracking meth-
ods have been developed [8–14]. We recently presented in [7] a robust approach
that combines a mechanical model and visual estimation. The good performance
of this method has been showed on data obtained from a deformable soft tissue
phantom. In this paper, we demonstrate that this method can achieve high ac-
curacy on real-data by testing our algorithm on the database proposed by the
MICCAI CLUST’15 challenge. The rest of the paper is organized as follows. In
section 2, we present the method that allows to track deformable target in 3D
ultrasound images. In section 3, we describe the performance of our approach
on real-data. Finally, section 4 concludes the paper.
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2 Method

The objective of our approach is to track the motions of a clinical target in
3D ultrasound sequence. To do so, we manually segment the target within the
first 3D ultrasound image and we generate a corresponding 3D tetrahedral mesh
model (section 2.1). Once the model is defined, we need to estimate the target
motions over the consecutive frames. For this purpose, the model displacements
are obtained by iteratively summing the internal displacements estimated from
a mechanical component (section 2.2), and the external displacements computed
from an intensity-based approach (section 2.3).

2.1 Piece-wise Affine Model

In 3D US images, a clinical target can be represented by a continuous set of Nv

voxels that is delimited by a visible border. Typical examples are shown in Fig. 2.
In order to define the target, we first extract its shape at the initial 3D frame
of the US sequence by performing a segmentation. To remove sharp edges and
discontinuous shapes, a smoothing step is performed on the 3D segmented surface
and a corresponding fitted tetrahedral mesh containing Nc vertices is defined.
Then, in order to represent the displacements of the voxels, we propose to use a
piece-wise affine warp function. Our piece-wise affine warping is parameterized
from both the vertice positions and an affine interpolation that uses barycentric
coordinates as proposed in [15]. In this way, we can relate all the voxel positions
with all the vertices as follows:

pim = M.q (1)

where M is a (3 ·Nv)× (3 ·Nc) constant matrix defining the set of barycentric
coordinates. pim is a (3·Nv)×1 vector defining all the voxels positions, and q is a
(3 ·Nc)×1 vector containing all the vertices positions. Thanks to Eq. (1), we can
update the positions of the target when the vertices of the model are displaced.
To compensate the lack of smoothness as well as the poor estimation of vertice
positions in US images, we combine a mechanical model to the estimation of
displacement.

2.2 Mechanical Component

Our approach combines a mass-spring-damper system to the mesh model previ-
ously described. Thus, the vertice displacements are constrained by linking each
connected vertice pair with a spring ensuring physically-plausible and coherent
displacements of the vertices. Furthermore, the mass-spring-damper system can
be specifically characterized by setting a mass value to each vertex, together
with elastic and damping coefficients on each spring depending on the soft-
tissues homogeneities. In this work, these values have been set empirically but
another solution could consist in estimating these parameters from elastogra-
phy images. However, a further study is required in order to define the impact
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on the accuracy of the approach. From this model, we can compute the force
fij = [fxij fyij fzij ]

T applied on a vertice qi from a neighbor vertice qj . This
force can be expressed as follows:

fij = Kij(dij − dinitij )(qi − qj) +Dij(q̇i − q̇j) ◦ (qi − qj) (2)

where dij and dinitij respectively represent the distance between the vertices qi

and qj at their current positions and at their initial positions. The ◦ operator
expresses the Hadamard product, Kij is a scalar value denoting the stiffness of
the spring that links the two vertices while Dij is the damping coefficient value.
By combining the previous equation for all the vertices, we can express the total
amount of forces fi exerted on each vertice qi of the mesh model as follows:

fi =

Ni∑
n=0

fin +Giq̇i (3)

Ni denotes the number of neighbors vertices connected to the vertice qi. Gi rep-
resents the velocity damping coefficient associated to the vertice qi. In order to
obtain the displacements ∆d associated to the mass-spring-damper system, we
integrate the forces expressed in Eq. (3) with a semi-implicit Euler integration
scheme. Such mechanical constraint can ensure the smoothness warping func-
tion of the deformation and limits the noise sensitivity of the intensity-based
approach.

2.3 Additive Update Tracking

Let us recall that the main objective of our approach is to estimate the new
positions of the target in 3D US sequence. To do so, we use an intensity-based
method that consists in evaluating the vertice displacements by minimizing a
dissimilarity function E. Therefore, we can express the cost function which min-
imizes image dissimilarity from the relationship described in Eq. (1) such that:

C(∆q) = E(It(pim(t)), It0(pim(t0))) = E(It(Mq(t)), It0(Mq(t0))) (4)

where Iti is a vector representing the US intensity of the volume acquired at time
index ti. ∆q denotes the vertices displacements. pim(ti) and q(ti) represent
respectively the voxel positions and the vertice positions at time index ti. In
order to determine the dissimilarity function E, we assume that the intensity
values of soft tissues are consistent over the time. Consequently, we propose to
use the Sum of Squared Differences (SSD) in order to measure the image error.
The cost function can now be expressed as:

C(∆q) = (It(M(q(t)))− It0(M(q(t0))))2 (5)

The objective is to find iteratively the vertice displacements by minimizing the
cost function C. To do so, we perform a Taylor expansion of the previous equation
that leads to:

C(∆q) ≈ (J∆q + It(M(qk−1(t)))− It0(M(q(t0))))2 (6)
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where qk−1(t) represents the estimation of the parameters at time t at iteration
k−1 of the optimization algorithm. J denotes the Jacobian matrix associated to
the cost function. This matrix relates the variation of the parameters ∆q with
the intensity variation of I. It can be computed as follows:

J = ∇I.M (7)

where ∇I denotes the gradient of the current 3D US frame. In order to obtain
the optimal displacements of the vertices, we chose to use a forward-additive
steepest gradient strategy as it is computationally efficient since it does not
require the calculation of pseudo-inverse of large Jacobian matrix. We therefore
obtain:

∆q = −αJt[It(M(qk−1(t)))− It0(M(q(t0)))] (8)

where α > 0 denotes the step size of the minimization strategy. Jt represents
the transpose matrix of the Jacobian J. As stated previously, in order to prevent
inaccurate results, we propose to combine this motion estimation with the in-
ternal displacements of the mass-spring-damper system. This can be performed
by iteratively estimate the optimal displacement as follows:

qk(t) = qk−1(t) +∆q +∆d (9)

where ∆d is the internal displacements obtained from the integration of forces
expressed in Eq. (3). ∆q represents the external displacements from the steepest
gradient strategy in Eq. (8). qk−1(t) denotes the estimation of vertice position at
iteration k−1 and at time index t. In order to balance the influence of the mass-
spring-damper system regarding to the motion estimation between ∆q and ∆d,
we can tune the α coefficient that represents the step size of the minimization
strategy in Eq.(8).

3 Results

3.1 Description of our Evaluation Environment

Our approach has been tested on real-data and has been implemented with
C++/GPU code by using Cuda and VTK libraries. The segmentation step in
the first volume is performed with the ITK-SNAP [16] software and can be
executed in less than 3 minutes. The mesh is generated thanks to the tetGen
[17] software. The resulted computation time of the online tracking is 350 ms
allowing thus real-time capabilities. The code was executed on a Windows 7
machine with an Intel core i7-3840qm(2.80GHz).

3.2 Validation Results on Real-data

In order to evaluate our method, we used the database provided by the workshop
MICCAI CLUST’15 challenge. The main goal of this challenge is to compare
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different state-of-the-art methods for tracking anatomical landmarks in US se-
quences. For this purpose, a database containing 2D/3D ultrasound sequences
of volunteers under free breathing is provided. Furthermore, in order to generate
ground truth data, the positions of the target landmarks are identified from ex-
pert annotations for each frame. Thus, a comparison can be performed between
the ground truth landmark positions and the point position estimated from the
tracking task over each frame. The point position at each frame is retrieved
by using the equation (1). Is is worth mentioning that both the ultrasound se-
quences and the annotations are provided by several research institutes. Thus,
the approach has been tested by tracking 32 different anatomical features ac-
quired from 16 3D US sequences. For each experiment, we set the elastic and
damping parameters such that Kij = 3.0 and Dij = 0.1 for all the springs, along
with Gi = 2.7 for all vertices. These values have been set empirically by compar-
ing the tracking accuracy with different set of parameters. This evaluation has
been performed on the training database of MICCAI CLUST’15 challenge. The
step size of the steepest gradient method has been set to α = 2×10−6. In future
work, we plan to automatically estimate these parameters by using elastography
images. The preliminary results are reported in Fig. 1. From this figure, we can

Fig. 1. Tracking error results for each tracking task. The x-axis and y-axis represent
respectively each ultrasound sequence and the associated tracking error expressed in
millimeters. The name of the sequence (e.g. SMT-05 1) represent both the acronym
of the institute and the sequence index. The right box plot ”3D” represents the aver-
age results for all the sequences (Red) Mean tracking error estimated from euclidean
distance. (Black box) Mean error ± standard deviation. (Whiskers) Minimum and
maximum errors. (Green dot) 95th percentile of error.

notice that our approach performs accurate tracking since the mean tracking
error is under 2.5 mm for most of the ultrasound sequences. However, we can
observe that we obtained some unsatisfactory results (SMT-05 01) when the tar-
get goes out of the field of view (FOV). In this case, the error is introduced by
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the voxels that are not within the field of view since they have a strong negative
influence in the cost function (Eq. 5). This issue can be tackled by using prescan
data as suggested in [7]. The performance of our approach is also illustrated in
Fig. 2 showing the tracking results at different frames on four landmarks rep-
resenting hepatic vein bifurcations. In addition, we can notice that our method
remains robust with empirical parameters.

(a) (b) (c)

(d) (e) (f)

Fig. 2. Example of the tracking task on two sequences. (a-b-c) Tracking of landmark
representing portal vein birfucation at frame index 00 (a), 23 (b), 59 (c). (d-e-f) Track-
ing of landmark representing first degree bifurcation of hepatic bile duct. The red model
represents the associated 3D mesh model at frame index 00 (d), 28 (e), 78 (f).

4 Conclusion

In this paper, we presented a method for tracking and automatically compen-
sating the displacements of a deformable target in 3D ultrasound images. The
robustness of our tracking method is ensured by combining a mechanical model
to the displacement estimation. We evaluated the good performance of our ap-
proach through CLUST’15 challenge database. In future work, we plan to auto-
matically estimate the elastic parameters by using elastography images.
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Abstract. In this paper we present a method for tracking of anatomical
landmarks in the liver. Our 4D ultrasound tracking method is based on
global and local rigid registration schemes. We evaluate our method on
the dataset that was presented in the MICCAI 2015 Challenge on Liver
Ultrasound Tracking (CLUST 2015). On the test set a mean tracking
error of 1.62 ± 0.94 mm is achieved.

1 Introduction

Ultrasound (US) is used by clinicians to image the human anatomy. It is an
inexpensive, non-invasive and portable imaging modality. It is widely used in di-
agnostics. As US imaging is real-time it can be used for interventions and therapy.
The anatomy can be tracked real-time. Some of the applications are tissue mo-
tion analysis and image guidance during interventions. One of the main purpose
of an US tracking approach is to incorporate (pre-operative) planning informa-
tion (to guide visualization), or to integrate preoperative imaging data during
interventions. Tracking or motion compensation algorithms helps to negate the
motion caused by the probe or the patient and the breathing motion in partic-
ular.

Several methods for tracking of anatomical landmarks [5, 7, 8] and motion
tracking of liver [4, 6, 9–12] in US have been proposed in literature. Our method
is based on the previous work described in Banerjee et al. [2] and [3]. The previous
methods were developed to track/register US liver volumes. In this work these
methods are used to perform the specific task of tracking anatomical landmarks
in the liver. The method is evaluated on the CLUST 2015 challenge datasets.

2 Tracking anatomical landmarks

We briefly review the register to reference strategy (RTR) [3] in Subsection 2.1
and the register to reference by tracking strategy (RTRT) [2] in Subsection 2.2
which are the core components of our landmark tracking approach. In Subsec-
tion 2.3 we discuss the landmark tracking approach, see the block diagram in
Figure 1.
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Tracking 

Step 2: (RTR)  

Local 3D
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RTR: In ->T(ref,n); Out -> T’(ref,n)

T’(ref,n)

T(ref,n)
Landmark

Fig. 1. Block diagram - tracking of anatomical landmarks.

2.1 Step 1: RTR [3]

The RTR approach [3] is a 3D to 3D US registration technique where the stream-
ing input frame (tn) is directly registered to the reference frame (tref ). It is
based on a block-matching scheme followed by an outlier-rejection scheme. For
a set of points (generated using a grid structure or a Gaussian distribution, see
the global point set and the local point set in Figure 2) located in the fixed
image, block-matching is used to find corresponding locations in the moving
image. The correspondences from the block-matching are inputs to the outlier
rejection scheme. The outlier rejection scheme uses geometric and appearance
consistency criteria to determine the block-matching results that can be trusted.
The method then uses only the selected block-matching results from the outlier
rejection scheme to estimate a rigid transformation using the approach described
by Arun et al. [1]. For details refer [3].

2.2 Step 2: RTRT [2]

The RTRT approach [2] is a 4D US registration/tracking technique, where the
registration is performed in two steps. In the first step (Step 1a), the stream-
ing input frame (tn) is registered to the previous frame in the temporal do-
main (tn−1). In the second step (Step 1b), the previously estimated transfor-
mation (T(ref,n−1)) and the transformation from the first step (T(n−1,n)) are
used to initialize the registration between the streaming input frame and the
reference frame, by composing the transformations as T(ref,n−1) ∗ T(n−1,n). To
reduce the accumulation of error the reference frame is re-registered to the
streaming input frame which was earlier transformed using the transformation
T(ref,n−1) ∗T(n−1,n), resulting in the final transformation, written as T(ref,n), see
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Fig. 2. Global and local point set: Left - Global point set generated using a grid
structure (blue color), Middle - Local point set (green color), Right - Global cum local
point set generated using a Gaussian distribution (σ=10 mm).

Figure 1. The RTRT approach additionally performs efficient tracking of points
in the temporal domain. The tracking starts with a set of ℓ points (generated
using a grid structure or a Gaussian distribution, see the global point set and the
local point set in Figure 2) located in the fixed/reference image. Points that are
consistently tracked are retained and the rest of the points are rejected. Addi-
tional points are introduced from a distribution (could be the same distribution
as used earlier) if the number of points for tracking is less than ℓ. For details re-
fer [2]. Note that in the next cycle of the RTRT approach, the current estimated
transformation T(ref,n) is used in determining the transformation between the
reference volume (tref ) and the next US volume (tn+1), written as T(ref,n+1).

2.3 Tracking landmarks

The anatomical landmark tracking approach, see Figure 1, consists of the follow-
ing two rigid registration steps. First, in the global 4D registration/tracking step,
the RTRT strategy is used track the whole (liver) US volume (T(ref,n)). Second,
in the local 3D registration step, we refine the tracking result by performing
registration using the neighborhood region close to the anatomical landmark
(T ′

(ref,n)).
Both the RTR and RTRT strategies use block-matching followed by an outlier

rejection scheme to find correspondences between the US volumes. Input to the
block-matching module is a point set. The portion/region of the image used for
the registration/tracking is determined by the locations of the points in the US
volume. As shown in the block diagram in Figure 1, a combination of a global
and a local point set is used to perform a global 4D tracking/registration and
only a local point set is used to perform a local 3D registration. The global point
set is generated using a grid structure spread over the entire US volume, the
local point set is a collection of points in the neighborhood of the anatomical
landmark (see Figure 2).

3 Experiment and results

The CLUST 2015 challenge dataset is used to evaluate the performance of the
method. The challenge contained 16 4D sequences from multiple sources. The
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Table 1. Summary of the data

Source Traning Test Image size Image res. Frame rate Scanner Probe
Sequences Sequences [voxels] [mm] [Hz]

EMC 3 2 192x246x117 1.14x0.59x1.19 6 Philips iU22 X6-1
ICR 1 1 480x120x120 0.31x0.51x0.67 24 Siemens SC2000 4Z1c
SMT 4 5 227x227x229 0.70x0.70x0.70 8 GE E9 4V-D

summary of the data is shown in Table 1. The data was divided into a training set
of 8 4D sequences and a test set of 8 4D sequences. For tuning the algorithm, an-
notations (i.e. landmarks) across multiple frames per 4D sequence were provided
for the training set. For the test set, one or more annotations in the first frame
were provided. These annotated landmarks were tracked over time. The tracking
performance of the test set was evaluated by the organizers of the challenge. The
Euclidean distance between the tracked points and manual annotations was cal-
culated. The error was summarized by the following statistics: mean, standard
deviation, 95 percentile, minimum and maximum distances.

MeVisLab, OpenCL and C++ are used for software development. The OpenCL
code was run on a NVIDIA GTX 780 Ti GPU.

Parameter setting : We used a block-size of 113 mm3 for the block-matching.
The block is evenly sampled 18x18x18 times. The similarity metric used is nor-
malized cross correlation (NCC), (σA, λ, σB) = (0.1, 0.1, 0.1) is used as the out-
lier rejection parameters. These values were optimized in the previous work [3].
The number of points for the block-matching (step one and step two) of the
RTRT approach and the RTR approach are set to 100, 200 and 400 points,
respectively. The search range for the block-matching (step one and step two)
of the RTRT approach and the RTR approach is set to 403 mm3, 103 mm3

and 203 mm3, respectively. The search range (step one and step two) of the
RTRT approach and the RTR approach are evenly sampled 60x60x60 times,
15x15x15 times and 30x30x30 times, respectively. The sampling determines the
step size for the block-matching. A local point set of 1000 points is generated
using a Gaussian distribution with mean located at the anatomical landmark
and standard deviation of 10 mm. The adjacent horizontal/vertical nodes of the
grid structure used to generate the global point set are 10 mm apart, see Fig-
ure 2. The points required for the block-matching in the RTR and the RTRT
approaches are sampled from the global and the local point sets.

The training set and the test set results are presented in Table 2 and Table 3,
respectively. The mean tracking error for the training set and the test set are
3.26 ± 2.62 mm and 1.62 ± 0.94 mm, respectively. The average run time of the
Step 1 (RTRT) and the Step 2 (RTR) of our approach as shown in Figure 1
are 6.68 seconds and 4.18 seconds, respectively. Hence for the given parameter
settings the GPU implementation runs at 11 seconds per frame.
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Table 2. Training set results

Landmarks Mean Std 95th% Min Max
(in mm) (in mm) (in mm) (in mm) (in mm)

EMC-01 1 0.94 0.51 1.65 0.36 1.79
EMC-02 1 1.19 0.47 1.83 0.80 2.01
EMC-02 2 2.28 1.10 3.62 1.02 3.80
EMC-02 3 2.05 0.58 2.80 1.48 2.96
EMC-02 4 1.80 0.54 2.39 1.14 2.41
EMC-03 1 5.55 2.28 8.20 1.78 8.54

EMC 3.01 2.42 7.85 0.36 8.54

ICR-01 1 1.57 0.56 2.36 0.27 2.83

SMT-01 1 2.06 0.41 2.74 1.08 2.97
SMT-01 2 3.46 0.55 4.43 2.42 4.61
SMT-01 3 3.00 0.42 3.75 1.91 3.89
SMT-02 1 1.65 1.60 2.20 0.6 16.49
SMT-02 2 1.92 0.47 2.74 0.91 3.27
SMT-02 3 3.72 0.70 4.79 2.30 5.59
SMT-03 1 2.29 0.72 3.43 1.19 3.62
SMT-03 2 2.09 0.60 3.14 0.68 3.54
SMT-04 1 8.88 3.82 15.04 0.97 15.31

SMT 3.30 2.64 9.20 0.60 16.49

Tracking Results 3.26 2.62 8.55 0.27 16.49

Table 3. Test set results

Landmarks Mean Std 95th% Min Max
(in mm) (in mm) (in mm) (in mm) (in mm)

EMC-04 1 1.10 0.63 2.28 0.26 2.31
EMC-05 1 1.79 0.36 2.16 1.15 2.17

EMC 1.45 0.61 2.18 0.26 2.31

ICR-02 1 1.65 0.37 2.14 0.80 2.15

SMT-05 1 3.39 2.53 10.13 0.90 10.24
SMT-05 2 0.97 0.36 1.58 0.21 1.91
SMT-06 1 1.56 0.37 2.11 0.57 2.49
SMT-06 2 2.01 0.52 2.77 0.99 3.69
SMT-06 3 1.37 0.35 1.95 0.43 2.18
SMT-07 1 1.83 0.42 2.49 1.02 2.92
SMT-07 2 1.79 0.39 2.46 1.04 2.69
SMT-08 1 1.48 0.41 2.26 0.22 2.44
SMT-08 2 1.09 0.29 1.52 0.37 1.77
SMT-08 3 2.10 0.73 3.37 0.87 3.91
SMT-09 1 1.10 0.35 1.70 0.14 1.89
SMT-09 2 0.96 0.38 1.66 0.10 1.87
SMT-09 3 2.25 0.60 3.16 0.18 3.73

SMT 1.63 0.94 2.86 0.10 10.24

Tracking Results 1.62 0.93 2.84 0.10 10.24
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Fig. 3. Training set tracking results: Left - Reference image manual annotation, Middle
- Moving image automatic annotation, Right - Moving image manual annotation. Row
1 - For the dataset EMC-03 1 at time point 42, the tracking error is 8.54 mm; Row 2
- For the dataset SMT-04 1 at time point 76, the tracking error is 15.14 mm.

4 Discussion and conclusions

In this paper we perform the task of tracking anatomical landmarks using a
combination of previous methods by Banerjee et al. [2] and [3]. A mean tracking
error of 1.62 ± 0.94 mm is achieved on the test set. In the first step, the point
set used for the global 4D tracking step is a combination of a global point set
generated from a grid structure and the local point set generated randomly in the
neighborhood of the anatomical landmark. This combination of point set ensures
a high percentage of points close to the landmark position during the global 4D
tracking step. The local point set is intended to track a specific landmark well,
whereas the global point set helps in increasing robustness in tracking. In the
second step, the local point set is again used in the local 3D registration step.
This step is designed to track the landmark in the presence of local deformations.

 0

 2

 4

 6

 8

 10

 12

 14

 16

0 2 4 6 8 10 12 14 16 18 20 22 24

T
ra

ck
in

g 
er

ro
r 

(in
 m

m
)

Time (in sec)

EMC-01_1
EMC-03_1
ICR-01_1

SMT-01_1
SMT-04_1

Fig. 4. Tracking examples from the training set.

48



Fig. 5. Test set registered Volumes: Left - Reference image manual annotation, Middle
- Registration result automatic annotation, Right - Moving Image. Row 1 - dataset
EMC-04 1, time point 124; Row 2 - dataset SMT-05 1, time point 66; Row 3 - dataset
SMT-07 2, time point 74.

The mean tracking error for the training set is 3.26 ± 2.62 mm. Two of
the datasets (EMC-03 1, SMT-04 1) from the training set have large tracking
errors, see Figure 3. In the EMC-03 1 4D US sequence the anatomical landmark
is located on a vessel which undergoes large deformations due to blood flow and
in the SMT-04 1 4D US sequence the anatomical landmark is located outside the
liver. Some of the tracking results from the training set are shown in Figure 4.
In the test set the SMT-05 1 4D sequence has large tracking error. In rest of
the dataset the tracking performance is satisfactory. Some representative test
set registration results are shown in Figure 5.

The speed depends on the number of points, search range size, number of
samples in the search range (step size), block size and number of samples in the
block. The current approach runs at 11 seconds per frame. For tracking of liver,
real-time (faster than image temporal resolution) speed is achieved by Banerjee
et al. [2] by selecting appropriate parameters for the US data acquired from
Philips iU22 machine with X6-1 probe.

To conclude, we extended our current registration approaches for 3D and 4D
US volumes such that it enables tracking of anatomical landmarks in 4D US
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sequences. The method is evaluated using CLUST 2015 challenge datasets. For
a test set of eight 4D US sequences, an accuracy of 1.62 ± 0.94 mm is achieved.
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Data Description

The Challenge on Liver Ultrasound Tracking (CLUST) would not have been
possible without images and annotations. This section provides an overview
of the data, the contributors and the associated references.

Tables 1-2 list the details for each sequence. The data, which was released
for training and test purposes prior to the MICCAI event, is divided into two
categories, namely 2D sequences with annotation of point-landmarks (see
Table 1) and 3D sequences with point-landmarks (see Table 2). Additional
sequences, not included in the Tables are released during the on-site challenge
at the MICCAI event.

Data Contributors

Seven groups provided data and generally also the corresponding annotations
for CLUST 2015. These groups and their related publications are listed
below, following the order of appearance in Tables 1-2.

CIL - Biomedical Imaging Research Lab, CREATIS, INSA Lyon,
France

ETH [2, 5] Computer Vision Laboratory, ETH Zurich, Switzerland
MED - mediri GmbH, Heidelberg, Germany
EMC [1] Biomedical Imaging Group, Departments of Radiology

and Medical Informatics, Erasmus MC, Rotterdam, The
Netherlands

ICR [3, 4] Joint Department of Physics, Institute of Cancer Research
& Royal Marsden NHS Foundation Trust, London and Sut-
ton, UK

SMT [6] SINTEF Medical Technology, Image Guided Therapy,
Trondheim, Norway
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Table 1: Summary of the challenge data for 2D sequences with annotation of
point-landmarks. The test set is listed in black font. The training sequences,
for which all available annotations were provided, are highlighted in red. The
on-site set is not included in this table.

Sequence info Acquisition info

Sequence Im.size Im.res. No. Im.rate Annotation Scanner Probe Freq.
[pix] [mm] frames [Hz] No. [MHz]

CIL-01 480x640 0.30 1342 22 2 Ultrasonix MDP 4DC7-3/40 4.5
CIL-02 480x640 0.40 1075 17 1 Ultrasonix MDP 4DC7-3/40 4.5
CIL-03 480x640 0.40 1070 18 2 Ultrasonix MDP 4DC7-3/40 4.5
CIL-04 480x640 0.50 895 15 2 Ultrasonix MDP 4DC7-3/40 4.5

ETH-01-1 490x570 0.40 3652 15 2 Siemens Antares CH4-1 2.22
ETH-01-2 482x608 0.41 4650 15 2 Siemens Antares CH4-1 2.22
ETH-02-1 472x565 0.42 2620 15 1 Siemens Antares CH4-1 2.22
ETH-02-2 462x590 0.41 4826 15 1 Siemens Antares CH4-1 2.22
ETH-03-1 473x437 0.28 4588 14 1 Siemens Antares CH4-1 2.22
ETH-03-2 464x442 0.28 4191 13 1 Siemens Antares CH4-1 2.22
ETH-04-1 469x523 0.40 5247 16 2 Siemens Antares CH4-1 1.82
ETH-04-2 480x652 0.38 4510 14 2 Siemens Antares CH4-1 1.82
ETH-05-1 462x563 0.42 4615 15 2 Siemens Antares CH4-1 1.82
ETH-05-2 477x556 0.40 3829 13 2 Siemens Antares CH4-1 1.82
ETH-06-1 462x580 0.40 5244 16 1 Siemens Antares CH4-1 2.00
ETH-06-2 476x604 0.38 5165 16 1 Siemens Antares CH4-1 2.00
ETH-07-1 475x548 0.37 5586 17 2 Siemens Antares CH4-1 1.82
ETH-07-2 467x568 0.37 5582 17 2 Siemens Antares CH4-1 1.82
ETH-08-1 466x562 0.36 5574 17 2 Siemens Antares CH4-1 1.82
ETH-08-2 466x589 0.36 5577 17 2 Siemens Antares CH4-1 1.82
ETH-09-1 464x560 0.40 4587 15 4 Siemens Antares CH4-1 1.82
ETH-09-2 479x566 0.42 4590 15 3 Siemens Antares CH4-1 1.82
ETH-10-1 462x589 0.36 5578 17 3 Siemens Antares CH4-1 1.82
ETH-10-2 470x595 0.36 5584 17 3 Siemens Antares CH4-1 1.82

ICR-01 393x457 0.55x0.42 4858 23 3 Elekta Clarity - Ultrasonix m4DC7-3/40 4.5
ICR-02 393x457 0.55x0.42 3481 23 2 Elekta Clarity - Ultrasonix m4DC7-3/40 4.5
ICR-03 393x457 0.55x0.42 3481 23 3 Elekta Clarity - Ultrasonix m4DC7-3/40 4.5
ICR-04 393x457 0.55x0.42 3481 23 4 Elekta Clarity - Ultrasonix m4DC7-3/40 4.5
ICR-05 397x485 0.55x0.43 3481 20 2 Elekta Clarity - Ultrasonix m4DC7-3/40 4.5
ICR-06 397x485 0.55x0.43 3481 21 2 Elekta Clarity - Ultrasonix m4DC7-3/40 4.5
ICR-07 397x495 0.49x0.38 3481 23 2 Elekta Clarity - Ultrasonix m4DC7-3/40 4.5
ICR-08 399x495 0.50x0.39 3481 23 3 Elekta Clarity - Ultrasonix m4DC7-3/40 4.5

MED-01-1 408x512 0.41 2455 20 3 DiPhAs Fraunhofer VermonCLA 5.5
MED-02-1 408x512 0.41 2458 20 3 DiPhAs Fraunhofer VermonCLA 5.5
MED-02-2 408x512 0.41 2443 20 3 DiPhAs Fraunhofer VermonCLA 5.5
MED-02-3 408x512 0.41 2436 20 5 DiPhAs Fraunhofer VermonCLA 5.5
MED-03-1 408x512 0.41 2442 20 2 DiPhAs Fraunhofer VermonCLA 5.5
MED-03-2 408x512 0.41 2450 20 3 DiPhAs Fraunhofer VermonCLA 5.5
MED-04-1 524x591 0.35 3304 11 1 Zonare z.one C4-1 4.0
MED-05-1 524x591 0.35 3304 11 2 Zonare z.one C4-1 4.0
MED-06-1 408x512 0.41 2427 20 4 DiPhAs Fraunhofer VermonCLA 5.5
MED-06-2 408x512 0.41 2424 20 3 DiPhAs Fraunhofer VermonCLA 5.5
MED-07-1 408x512 0.41 2470 20 3 DiPhAs Fraunhofer VermonCLA 5.5
MED-07-2 408x512 0.41 2478 20 3 DiPhAs Fraunhofer VermonCLA 5.5
MED-07-3 408x512 0.41 2450 20 3 DiPhAs Fraunhofer VermonCLA 5.5
MED-07-4 408x512 0.41 2456 20 4 DiPhAs Fraunhofer VermonCLA 5.5
MED-08-1 524x591 0.35 3304 11 3 Zonare z.one C4-1 4.0
MED-08-2 524x591 0.35 3304 11 3 Zonare z.one C4-1 4.0
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Table 2: Summary of the challenge data for 3D sequences with annotations of
point-landmarks. The test set is listed in black font. The training sequences,
for which all available annotations were provided, are highlighted in red. The
on-site set is not included in this table.

Sequence info Acquisition info

Sequence Im.size Im.res. No. Im.rate Annotation Scanner Probe Freq.
[pix] [mm] frames [Hz] No. [MHz]

EMC-01 192x246x117 1.14x0.59x1.19 79 6 1 Philips iU22 X6-1 3.2
EMC-02 192x246x117 1.14x0.59x1.19 54 6 4 Philips iU22 X6-1 3.2
EMC-03 192x246x117 1.14x0.59x1.19 159 6 1 Philips iU22 X6-1 3.2
EMC-04 192x246x117 1.14x0.59x1.19 140 6 1 Philips iU22 X6-1 3.2
EMC-05 192x246x117 1.14x0.59x1.19 147 6 1 Philips iU22 X6-1 3.2

ICR-01 480x120x120 0.31x0.51x0.67 141 24 1 Siemens SC2000 4Z1c 2.8
ICR-02 480x120x120 0.31x0.51x0.67 141 24 1 Siemens SC2000 4Z1c 2.8

SMT-01 227x227x229 0.70 97 8 3 GE E9 4V-D 2.5
SMT-02 227x227x229 0.70 96 8 3 GE E9 4V-D 2.5
SMT-03 227x227x229 0.70 96 8 2 GE E9 4V-D 2.5
SMT-04 227x227x229 0.70 97 8 1 GE E9 4V-D 2.5
SMT-05 227x227x229 0.70 96 8 2 GE E9 4V-D 2.5
SMT-06 227x227x229 0.70 97 8 3 GE E9 4V-D 2.5
SMT-07 227x227x229 0.70 97 8 2 GE E9 4V-D 2.5
SMT-08 227x227x229 0.70 97 8 3 GE E9 4V-D 2.5
SMT-09 227x227x229 0.70 97 8 3 GE E9 4V-D 2.5
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