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Abstract. Planned delivery of focused therapy is adversely affected by
internal body motion, such as from breathing, which could be mitigated,
if tracked accurately in real-time. By extending an algorithm for superfi-
cial vein tracking, we hereby present a robust real-time motion tracking
method for 2D ultrasound image sequences of the liver. The method
leverages elliptic and template-based models of vessels in the liver, cou-
pled with a robust optic-flow framework. Potential drifts in this iterative
tracking are corrected when the breathing phase is close to that of the
initial reference frame, detected by comparing the appearance of tracked
feature regions. Results are evaluated on the CLUST-2015 dataset, with
1.09 mm mean and 2.42 mm 95th percentile errors in 24 2D test sequences
collected from four different centers.

1 Introduction

During radiation therapy and focused ultrasound treatment, patient motion ad-
versely affects the planned irradiation of the target anatomy. Ultrasound tracking
can provide a real-time solution to observe and mitigate such motion; thereby
requiring smaller treatment margins, minimizing exposure to healthy tissue.

Tracking in ultrasound (US) is challenging due to low US signal-to-noise ratio
and changes in landmark appearances in time. Vessels are robust landmarks,
easier to identify and track in US, since they have high US contrast and well-
defined shapes. We presented earlier an algorithm to identify and track superficial
veins in the forearm, for the measurement of peripheral venous pressure [2,3].
In that work, large motions caused by hand-held manipulation of the probe, as
well as veins collapsing meanwhile, were to be tracked, for which skin pressure
measurements provided a surrogate to identify vein collapses and assist in their
tracking. This method, when applied as given in [3] (with modifications to fit
the liver images), fails entirely in 33% of the CLUST-2015 training sequences,
while achieving a mean error of 1.32mm for the rest.

Since the vessels do not compress in the liver case and motion is known to be
repetitive, we have hereby extended the method of [3] by (4) reinitializing track-
ing with the reference frame when iterative tracking is poor; (i¢) detecting and
taking into account the shadowing from ribs and poor skin contact; (ii7) allowing
for features to go temporarily out of the US view or disappear in the shadow;
(iv) removing reliance on additional pressure readings and the interactive user



input/correction in the venous-pressure case; and (v) adapting for curvilinear
image acquisition. In particular, a more sophisticated motion tracking and a
template-based resetting mechanism are introduced to recover from drift and er-
roneous tracking, while considering the repetitive motion. The Star-based edge
detection [5,6] and template-based vessel tracking are employed similarly to [3].
The proposed algorithm was evaluated on a set of 2D image sequences provided
by the CLUST-2015 challenge (http://clust.ethz.ch).

2 Methods

2.1 Motion Tracking

We use Lucas-Kanade method [7] for motion estimation between frames. The
method takes a set of points {p} in one frame and finds their corresponding
positions {p'} in the next frame. To limit motion estimation to the US field-of-
view and to exclude shadowed areas, a motion mask is employed. The mask is
built by binarizing the current frame f; with a small threshold (5 in our setup)
and median filtering the output with a 10 x 10mm? kernel to remove islands,
c.f. Figs. 1(a) and 1(b). Median filter was implemented by a box-filter for speed
considerations, exploiting the binary nature of the image.

We combine two tracking information: Iterative Tracking (IT) finds motion
between consecutive frames f;_; and f; for individual points-of-interest (POI),
whereas Reference Tracking (RT) finds motion from the (initial) reference frame
fo to f; for all POIs at once. RT is able to recover POI positions when motion
cycle, induced by breathing, is in the same phase as the reference, while IT helps
tracking points during the rest of the motion cycle. The points {p} are selected
on a square regular grid centered around each POI (with a grid separation set to
5mm herein). Starting from 3 x 3, the grid size is increased to {5 x5, 7x 7, ...}
to ensure a required number of tracking points (100 for RT and 10 for IT) fall
inside the motion mask. IT uses current (previous-frame) positions of the POIs
{mp}, while RT uses the reference POI positions {mpg}.

Motion estimation in US is highly error-prone; hence, predicted point-wise
motion vectors are filtered as follows. In IT, the per-point tracking error (PPE)
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Fig. 1: Initial US frame (a), corresponding motion mask (b). Iterative (c¢) and
reference (d) motion tracking grids, where discarded motion vectors are colored
in pink and POIs shown as white circles.
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returned by the Lucas-Kanade method is used to discard error-prone pairs of
points determined by a pixel error threshold of 6. Regardless of error, a minimum
of 5 tracking points {p} are kept. From remaining point pairs {p — p'}, a 6 DOF
affine transform is computed as the local motion estimation for each IT-tracked
POIL. For filtering RT, the points are checked for bi-directional consensus, i.e. the
consistency of motion from first to current and back to first frame, fo — f; — fo.
Consider this motion yields the following locations {p — p’ — p’'}, then the point
is kept, iff |[p—p”’|<4 mm. Next, the RT points are also checked for consensus with
median motion direction, i.e. kept iff (p’ — p) - med({p’ — p}) > 0. If more than
60% of original RT points are filtered in the above process, then RT is considered
invalid. In RT, a 6 DOF affine transform is computed from the combined set
of RT point-pairs in the entire frame as a global motion estimation w.r.t. the
reference frame. See samples of motion estimation grids in Figs. 1(c) and 1(d).

2.2 Vessel Size and Position Refinement

From the POI positions given in the refference frame, we first use a set of binary
templates of different sizes to estimate the initial vessel size ey by template-
matching, similarly to the initialization/detection step in [3]. If Normalized Cross
Correlation (NCC) of the matched template score for a POI is smaller than a
threshold (herein, 0.3 within a [0..1] NCC range), then this POI is considered
to be a non-vessel structure; and, as such, its position is tracked only by RT
and IT (mp;), completely avoiding vessel-based treatments and later-described
Template-based Reset. Otherwise, it is concluded to be a vessel and treated
similarly to [3]: For relatively larger vessels, the Star edge-detection together
with dynamic programming and ellipse fitting is used. For smaller vessels with
difficult to detect edges, template-matching is used with binary templates of hy-
poechoic ellipses overlaid on hyperechoic backgrounds. We use an axis-aligned
ellipse representation for vessels as e = [cx, ¢y, 7y, 7y]T, Where ¢, and ¢, denote
ellipse center coordinates and ry and r, are the semi-axes (radii) along corre-
sponding axes. Although the vessels in the liver are not necessarily axis-aligned,
this constraint remaining in the method from earlier venous application still al-
lows for satisfactory tracking, meanwhile providing speed gain by reducing the
number of templates.

For each frame f;, the ellipse center (cy, ¢y ); is transformed using the affine
IT transform of the corresponding POI. Then, the center and radii are refined
using (a.) the Star method, when (ry);>10px, or (b.) binary template-matching,
otherwise. The center refinement is restricted to 2 x 2mm? around the previous
center (cx,cy)i, and the radii are permitted to change up to 2mm per frame.
The vessel size is restricted in each axis to be within [75..120]% of its initial size
in the reference frame to increase robustness to false detections.

2.3 Template-based Reset

The initial reference frame fy and the current frame f; are used to re-initialize
tracked POI positions, when the breathing/motion phase is the same as in the



reference frame. For this, first an auto-correlation noise level is estimated in
the reference frame following initialization: An image patch of size 2(rx,ry)o +
(10mm, 10mm) centered at (cx, ¢y )o is taken from fy and its NCC with shifted
versions of itself (to eight surrounding positions with +0.5 mm offsets) are com-
puted, with the minimum NCC score being our reset-threshold of self-similarity.

For each frame f;, the above reference POI patch is template-matched within
a region of (cx, ¢y)o £ (10mm, 10mm), where the position of the best match is
reported as a position reset candidate tp;, iff its NCC score is larger than the
reset-threshold determined for that POI as described above.

2.4 Motion Tracking Recovery

Fig. 2 presents an overview of per-frame tracking. For each frame f;, RT and IT
yield affine transforms Ar; and { Ai; }, respectively, which are used to track points
without any vessel assumptions (e.g., for non-vessel structures). Additionally,
{Ai;} are used to update positions of vessel representations {e;_1}. Combined
with the Template-Based Reset, a best ellipse estimate is then picked and its
position is refined further. Alg. 1 gives algorithmic details of tracking recovery
stages for improved robustness. Each stage is further explained below.
Updating Motion Tracked Points: Kalman filtering [1] is used for tracking
POI locations, when RT is valid. Kalman-filter state is reset, if RT fails.
Picking Best Position: Tracking is switched from vessel tracking in Sec. 2.2
to pure motion-tracking by IT, if the POI moves outside the image or into a
shadowed area; defined by a wvisibility-mask constructed from the earlier motion
mask by including only shadowed areas, which extend all the way down to the
far-side of the image. A vessel is considered not-visible, if more than half of the
bounding box of a vessel representation e; are outside this visibility-mask. To
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Fig.2: Algorithm overview.



Algorithm 1 Motion Tracking Recovery

1: for each mp;_1 in {mp;_1} do > UPDATING MOTION TRACKED POINTS
2: if Is_Valid(Ag;) then

3 mp; < Agi - mpi—1

4 mp; <+ Update_Kalman_Filter(mp;})

5 else

6: mp; < Al; - mpi_1

7 Reset_Kalman_Filter(mp;)

8: for each (e}, ey, tp;, mp;) in {e}, e}, tp;, mp;} do > PICKING BEST POSITION
9: if Overlaps_Vessel Mask(ej) or Overlaps_Vessel_Mask(e;') then

10: e e}

11: else

12: cp + Position_Of_Highest NCC(Center (e} ), mp;,Size(e}))

13: if Is_Valid(¢p;) then

14: cp + Position_Of_Highest NCC(cp, tp;,Size(e}))

15: e} + (cp,Size(ey))

16: for each (e}’,mp;) in {e}’,mp;} do > POSITION ADJUSTMENT

17: (82, 8y) +Size(e}”)

18: §4= 20+ (sz +5y)/2

19: d + | Center(e]") — mp;]|

200 a g

21: cp +Center(e}’) - a + mp; - (1 — a)

"

22: €; < (cp,Size(ei ))

evaluate potential vessel locations and hence pick the best, a vesselness score
is computed for each potential location (cy,c,) by the NCC of a similar-sized
binary template and the image patch around that location.
Position Adjustment: Thanks to the robustness of the combined RT and
IT strategies, tracked points {mp;} stay relatively close to actual targeted POI;
nevertheless, not always track those with high precision. Conversely, the methods
in Sec.2.2 can locate vessel center relatively precisely, although such tracking
may drift to adjacent hypoechoic structures in case of low local contrast or large
motion. Accordingly, as seen in Alg. 1, a final position-adjustment for vessel-like
POIs ensures that representations {e;} stay in close proximity of tracked points
{mp;} — which is a constraint relaxed for larger vessels.

For vessel-like POIs the center positions {(cx, ¢y);} and, for others, the posi-
tions {mp;} are reported as the output tracked location.

3 Results and Discussion

The algorithm was implemented in C++ using OpenCV libraries. In particular,
caleOpticalFlowPyrL K function was used for motion estimation (window-size set
to 5mm and the number of pyramid levels to 5), matchTemplate for template
matching in CV_.TM_CCOEFF_NORMED mode, and KalmanFilter for RT po-
sition filtering (with measurementNoiseCov set to 200). Additionally, OpenMP



was used to accelerate motion estimation by running RT and all ITs in parallel,
as well as for parallelization of template matching in Sec.2.2.

The algorithm was evaluated on a Windows-based PC, equipped with an Intel
Core i7-3770K CPU @ 3.5GHz. The performance depends on (%) the acquisition
frame rate, since for larger frame-to-frame relative motion the motion estimation
takes longer; (ii) tracked vessel sizes, affecting Star or template-matching per-
formance; and (zi7) the number of POIs to track. Table 1 presents per-sequence
tracking speed for all challenge sequences. The reason for the processing speed
to vary can be attributed to larger motion at lower acquisition frame rates as
well as different number of POI in given seeuences. It is, nevertheless, seen that
our processing is faster than the acquisition in all cases, with a latency of no
more than the acquisition frame rate.

All algorithm’s parameters were optimized using a training data set, provided
by the CLUST-2015 organizers. Table 2 presents tracking performance results
evaluated by CLUST organizers on their test data-set. Fach sequence had up to
4 points marked in an initial reference frame, and the algorithm tracked them
through the rest of the frames (average image resolution is ~447x552 px and
average sequence length is ~3761 frames). The best average individual score in
the previous tracking challenge CLUST-2014 [4], on slightly smaller data-set and
with different annotators, was 1.33 mm mean error (standard-deviation 0=1.94);
and the error for median fusion of six participants was 1.08 mm (0=1.42). Our
method is seen to perform with 1.09 mm mean error (6=1.75), superior to any
earlier results, and at a comparable level with the earlier consensus (median-
fused) tracking results.

It was observed in some sequences that frames were dropped; sometimes later
appearing as an out of context frame (probably injected later due to a buffer
overflow in the video capturing device, unless this is a data-preparation artifact).
Such frames were detrimental to motion tracking. Therefore, if the average per-
point error PPE in IT for a frame is over 3 times higher than the median average
PPE of last 5 frames, we simply skipped that frame and returned previous POI
positions.

Table 1: Per-sequence performance, where image acquisition rate is given in Hz,
and algorithm’s performance in Frames Per Second (FPS).

Sequence CIL ETH
03 04 |06-1 06-2 07-1 07-2 08-1 08-2 09-1 09-2 10-1 10-2
Hz 8 15|16 16 17 17 17v 17 15 15 17 17
FPS 28.5 38.5|50.5 43.9 30.8 30.2 31.4 314 20.2 25.3 20.5 18.1
Sequence ICR MED
05 06 07 08 [06-1 06-2 07-1 07-2 07-3 07-4 08-1 08-2
Hz 20 21 23 23|20 20 20 20 20 20 11 11
FPS 48.8 50.7 44.5 36.7[22.6 24.5 29.3 282 257 21.0 16.2 17.5




Table 2: Mean tracking error, standard deviation, 95th percentile, minimum and
maximum errors for each point of interest as well as average scores per sets of
points and total scores for all points in the CLUST-2015 2D datasets (all results
are in millimeters).

Individual Scores Individual Scores
POI | Mean o 95% Min Max POI |Mean o 95% Min Max
CIL MED1

03; | 0.93 049 1.81 0.08 2.89 06-1, | 1.05 0.83 2.55 0.07 5.17
032 5.07 2.84 10.17 0.71 15.06 06-12 | 092 0.29 1.39 0.10 1.86
041 0.95 0.44 1.78 0.21 2.44 06-13 | 1.03 0.64 2.08 0.04 4.09
042 0.89 0.45 1.75 0.02 2.08 06-14 | 0.82 0.26 1.25 0.21 231
ETH 06-2; | 0.83 0.55 1.98 0.05 3.37
06-1; | 0.80 0.27 1.23 0.10 2.08 06-2o | 1.04 0.33 1.61 0.34 2.22
06-2; | 0.48 0.26 0.98 0.02 1.35 06-23 | 1.03 0.65 2.44 0.06 3.45
07-1; | 0.71 0.40 1.50 0.02 2.61 07-1; | 0.78 0.44 1.63 0.04 2.38
07-12 | 1.22 0.57 2.21 0.02 3.52 07-12 | 1.02 0.33 1.55 0.03 2.25
07-2; | 0.92 0.75 2.57 0.02 3.90 07-13 | 0.57 0.28 1.05 0.06 1.30
07-25 | 1.14 0.59 2.20 0.08 3.84 07-2; | 0.61 0.38 1.30 0.01 1.82
08-1; | 0.99 0.52 1.95 0.14 3.34 07-2, | 0.82 0.32 1.36 0.11 1.89
08-12 | 0.74 0.31 1.29 0.07 2.20 07-23 | 0.58 0.29 1.06 0.03 1.57
08-2; | 0.79 1.00 1.43 0.02 7.08 07-3; | 1.80 1.33 4.94 0.02 5.65
08-22 | 0.63 0.32 1.20 0.07 1.82 07-32 | 0.88 0.43 1.70 0.03 2.12
09-1; | 0.66 0.56 1.16 0.06 10.93 07-33 | 0.52 0.34 1.22 0.04 1.97
09-12 | 0.62 0.52 1.11 0.02 10.01 07-4; | 1.30 0.86 3.11 0.12 3.92
09-13 | 0.83 0.53 1.28 0.04 10.30 07-42 | 0.59 0.29 1.11 0.03 1.50
09-14 | 1.75 1.69 5.23 0.08 8.35 07-43 | 0.82 0.33 1.37 0.03 1.89
09-2; | 0.57 0.25 0.97 0.02 1.34 07-44 | 0.80 0.25 1.21 0.12 1.53
09-25 | 4.27 7.18 22.30 0.05 25.55 MED2

09-23 | 4.50 5.99 17.21 0.06 22.03 08-1; | 0.59 0.27 1.06 0.08 1.50
10-1; | 0.81 0.22 1.22 0.28 1.68 08-1> | 0.78 0.36 1.36 0.07 1.98
10-12 | 0.59 0.25 1.03 0.10 1.30 08-13 | 0.64 0.38 1.27 0.04 2.58
10-15 | 0.79 094 1.11 0.04 6.63 08-2; | 0.55 0.22 0.94 0.08 1.38
10-2; | 0.67 0.27 1.13 0.07 2.04 0822 | 0.64 0.30 1.21 0.03 1.81
10-22 | 0.50 0.26 0.96 0.03 1.50 08-23 | 1.13 0.83 2.93 0.07 4.89
10-23 | 1.11 1.72 5.84 0.02 7.19
ICR Average scores per set

05; | 1.51 0.42 2.20 0.53 3.02 POI |Mean o 95% Min Max
052 | 1.05 0.37 1.70 0.24 2.36 CIL | 2.07 2.41 7.90 0.02 15.06
06, | 1.90 0.61 2.77 0.64 7.89 ETH | 1.09 2.18 2.30 0.02 25.55
062 1.78 1.30 4.70 0.01 9.67 ICR 143 1.33 3.49 0.01 12.37
07: | 0.97 0.29 146 0.18 1.91 MED1 | 0.89 0.61 1.93 0.01 5.65
072 1.73 1.21 4.12 0.03 10.92 MED2 | 0.72 0.48 1.54 0.03 4.89
08, | 245 3.02 9.73 0.08 12.37 Average scores for all POI

082 0.81 0.30 1.30 0.12 1.72 POI |Mean o 95% Min Max
083 0.72 0.25 1.14 0.12 1.38 — 1.09 1.75 2.42 0.01 25.55




There was a number of additional strategies that we attempted as described
below, without any significant gain on average tracking error. The organ motion
is rather coherent in nature, thus the relative positions of points do not change
substantially. We attempted to leverage this by restricting relative positions of
tracked points to one another, with some degree of relative movement allowed;
nevertheless this did not improve the average tracking performance. We also
attempted to reinitialize the reference frame when the tracking is judged to
be correct and the motion is in the same phase, in order to take into account
image appearance changes over time: For this, we used a simple approach of
reinitializing a new reference when when RT is valid and all points show low
error, however it was not possible to reliably detect incorrectly tracked points
and reinitialization would thus create even a higher drift. Consequently, the use
of only the initial reference frame (without any reinitialization) yielding the best
results on average.

4 Conclusions

Our proposed algorithm has shown superior results to methods published in the
previous CLUST challange. The average tracking error of 1.09 mm is relevant in
liver motion-tracking for radiation and focused therapy applications. Our method
runs in real-time, with average latencies of [20..70] ms in the given sequences.
Aside from the given parametrization on the training dataset, no further per-
machine or per-sequence parameter tuning is required.
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