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Abstract. We present a method for landmark tracking in long liver
ultrasound sequences. We employ metric learning, and train a convo-
lutional neural network to map from pixel intensities of grayscale ul-
trasound image patches into a low-dimensional embedding space such
that patches showing the same landmark at their center have a small
L2 distance in the embedding. We then locate landmarks throughout a
sequence of ultrasound frames by extracting patches from a search win-
dow inside the target frame and finding the patch in the target frame
that in the embedding space minimizes the distance to a number of
template patches containing the landmark and extracted from previous
frames. Our approach had a mean tracking error of 2.83mm, with 38 of
62 tracked points having an error of less than 1.5mm.
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1 Introduction

Ultrasound (US) imaging is a widely used medical imaging technique due to
its relatively low-cost components, fast acquisition speed, and safe, non-ionizing
radiation. In addition, because it also offers high temporal resolution images in
real-time, US is often used for tissue tracking during image-guided intervention
and therapy.

Tracking the motion of tissue in an ultrasound sequence is complicated by
respiratory motion, image noise, and the relatively long (often more one minute)
acquisitions. Tracking is further complicated by large changes in shape of the
tracking target, particularly when anatomical targets are not captured in plane.
Long acquisitions are particularly difficult due to high likelihood of both patient
and operator motion. In many cases, the US capture probe is handheld.

In this paper, we present a new tracking scheme based on a distance metric
for US image patches that is learned from data. We use the learned distance
metric to compare candidate square image patches with patches extracted from
a target reference frame. The algorithm requires a training phase in which the
distance metric is learned from raw pixel intensity values, for all device types
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simultaneously. No further parameterization is needed when applying the algo-
rithm to previously unseen data. We evaluated this new scheme participating in
the MICCAI CLUST15 [2] liver ultrasound tracking challenge.

1.1 Related Work

Several systems that use deep neural networks to learn distance metrics have
been proposed for applications such as face verification and signature verifica-
tion. Training for verification instead of classification has the advantage that
fewer labeled examples are needed, and that systems can naturally generalize to
categories previously unseen [7,8,20].

The very similar CLUST14 challenge saw a wide range of proposed meth-
ods ranging from non-linear image registration, and long-term and short-term
template matching, to Bayesian methods. None of the proposed methods incor-
porated deep neural networks as part of their solution [17]. However, the winner
of the MICCAI 2013 Grand Challenge on Mitosis Detection was a system using
a deep neural network at its core [10].

2 Materials and Methods

2.1 Ultrasound Data

2D B-mode ultrasound data was provided as part of the MICCAI 2015 Chal-
lenge on Liver Ultrasound Tracking (CLUST) [2]. The data were cine images of
human livers. The data came from a number of patients and institutions (CIL,
ETH, ICR, and MED datasets) and were acquired by one of five ultrasound sys-
tems (Ultrasonix MDP, Siemens Antares, Elekta Clarity - Ultrasonix, DiPhAs
Fraunhofer and Zonare z.one). The data had varying spatial (0.28 – 0.55mm)
and temporal resolution (11 – 23Hz) and sequences lasted from 59.4 – 328.6s.
The number of annotations per image sequence ranged from one to five liver
features.

24 of the 48 datasets, totaling 53 target annotations, were provided with
ground truth annotations (of liver blood vessels) throughout the acquisition se-
quence. Approximately 10% of the frames had the locations of the tracking points
annotated. A total of 62 points had to be tracked in the test-set where only the
initial position of liver features (blood vessels centers) was given.

Annotations were provided in the following form: frame number, x-pixel (lat-
eral position) and y-pixel (axial position).

2.2 Distance Metric Learning

Given a sequence of ultrasound images I0...N , along with an annotated landmark
L given by its position c0 ∈ R2 in the first frame I0, the problem is to locate
the center positions c1...N of the given landmark in all subsequent frames I1...n.
We solve the problem by training a convolutional neural network (ConvNet)



that learns a function GW (p) to map ultrasound image patches p into to a low-
dimensional space such that the distance metric

DW (pi, pj) = ||GW (pi), GW (pj)||2 (1)

is small if pi and pj show the same landmark at their center and large oth-
erwise.

The weights W of mapping function GW are learned using stochastic gradient
descent and the following loss function originally proposed in [14],

L(pi, pj , sij ,W ) =

{
1
2 DW (pi, pj)

2 if sij = 1,
1
2 max(0,m−DW (pi, pj))

2 if sij = 0
(2)

where sij = 1 for a pair of patches (pi, pj) that show the same landmark at their
center and sij = 0 otherwise. m is a margin constant used to limit the penalty
for dissimilar pairs; it was set to 0.1.

2.3 Training Data

For training, we form pairs of square patches (p1, p2) of the same landmark
extracted from different frames using the ground-truth annotations. These are
the pairs for which the distance DW (p1, p2) is learned to be small.

In addition, we form twice as many pairs of patches for training where p1
contains the same landmark as p2 but shifted away from the center by at least
4 and by at most 46 pixels in both dimensions uniformly at random. We also
train with some pairs where both patches show different landmarks taken from
the same sequence. These are the pairs for which the distance is learned to be
big.

Because our mapping function GW has many learnable parameters (1,865,278
in our best configuration), and thus tends to show high variance, we augment
our training data by randomly flipping patches in both vertical and horizontal
directions.

We pre-process all ultrasound image frames with a small-size median filter.
All extracted patches are of size 46 x 46, which we determined empirically to be
optimal. We use all available training data to learn the parameters of GW .

2.4 Convolutional Neural Network Architecture

A ConvNet is a feed-forward neural network that uses successive pairs of convo-
lutional and max-pooling layers, followed by fully connected layers. The input
to our ConvNet is raw pixel intensities, the output is an embedding in low-
dimensional space. All weights W of the network are learned from scratch using
the contrastive loss function in (2). The weights are randomly initialized using
Glorot initialization as described in [12]. Weights are updated during training
using Nesterov’s Accelerated Gradient [18]. We train a single network that learns
the weights of GW for all sequences and device types simultaneously. Table 1
lists the architecture of our ConvNet.



Our decision to use a ConvNet to implement GW is motivated by the recent
successes of using ConvNets in mitosis detection, and in computer vision tasks
in general [10]. Through the use of learning curves in our experiments we’ve
determined that our ConvNet is still well in the regime where using more training
data (and possibly more aggressive data augmentation) leads to a linear increase
in performance. Another intriguing property of ConvNets is that they can learn
from raw pixels directly, and thus eliminate the often tedious task of engineering
features and choosing dataset-specific parameters by hand. The max pooling
layer calculates the max value of a particular feature over a region of the image.
This ensures that the same result is obtained even when images features undergo
small translations.

Table 1. 8-layer architecture of our ConvNet with a total of 1,865,278 learnable param-
eters. Layer type: I - input, C - convolutional, MP - max-pooling, MO - maxout [13],
FC - fully-connected.

Layer Type Maps and Neurons Filter size

0 I 1Mx46x46 —
1 C 32Mx46x46 5x5
2 MP 32Mx25x25 2x2
3 C 64Mx23x23 3x3
4 MP 64Mx12x12 2x2
5 FC 200 1x1
6 MO 50 4x1
7 FC 50 1x1

2.5 Template Patches

In a given ultrasound frame Ii, we predict the center ci ∈ R2 position of the
tracked landmark L by finding a target patch p that minimizes

DW (p, t0) +

∑i−1
k=i−K DW (p, tk)

K
(3)

for K + 1 template patches t extracted from previous frames and showing
landmark L. See Figure 1 for examples of the distance map created by the
window search.

Template patch t0 is extracted from the initial frame I0 with its center po-
sition c0 provided by the human annotation. Patches ti−K . . . ti−1 are extracted
each from K previous frames Ii−K . . . Ii−1 with their center at the position of
the tracking algorithm’s previously predicted landmark position yi ∈ R2. Thus,
to be able to extract template patches for use in frame Ii, we must first predict
the position y of L in frames Ii−K , . . . , Ii−1.

Through our experiments, we determined K = 10 to be the optimal number
of template patches to use from previous predictions.



Fig. 1. Distance map created by the window search; the dark blue region represents the
most similar match. Performed on the second point in ICR-01 on frames 1, 81 . . . 1121.

2.6 Search Window

When looking for a patch p that has minimum distance to template patches t
for landmark L as defined in Section 2.5, we only consider patches in the target
frame Ii that have their center pixel within a defined square search window.
This search window is searched through exhaustive search and itself centered at
the predicted position yi−1 of landmark L in the previous frame Ii−1, or at the
initial annotation c0 for i = 1.

The predicted position yi is defined by the center pixel of the patch p that’s
found to have minimum distance. We chose the width of the search window to
be 24 pixels, which allows tracking to compensate for errors in previous frames.

Fig. 2. Histogram of mean tracking errors. 38 of 62 landmarks in the test set have a
mean tracking error of 1.5mm or less.

3 Experimental Results

We implemented the proposed approaches and methods in the previous section
using Nolearn [3] and Lasagne [1] in Python. Lasagne uses Theano [6] for execu-



tion, which allows us to use GPUs for computations. We ran all execution using
the Amazon Web Services (AWS) g2.2xlarge instances1.

Each version of the network architecture was trained using a single g2.2xlarge
instance though various network architectures and hyperparameters settings
were often trained in parallel using multiple machines2. The sliding window
search was performed using a single g2.2xlarge instance though each sequence
could be made to run in parallel.

The tracking results for each sequence group are shown in Table 2. The
results in CIL, MED-1 and MED-2 were relatively consistent with small standard
deviations, 95th percentiles and maximum values. For the ETH and ICR examples,
there were examples where the search “got lost” and the algorithm returned a
window very off from the desired target. For example the mean error on ICR-07 2

was 18.55mm. Figure 2 visualizes a number of outliers in the mean test error
distribution.

The computational time to learn the distance metric was approximately 1.5
hours for the best performing models. Training differs slightly depending on the
exact network architectures used and the number of training epochs needed for
sufficient convergence. Once the distance metric was learned, the same metric
was applied to each sequence group. The processing time for the search was
100msec / annotation / frame. This time was per learned distance metric. Given
that we were performing an ensembling where two motion vectors were averaged
in order to produce the final result, the actual time was double that: 200msec
/ annotation / frame though the two estimations can be performed entirely in
parallel. Real-time performance of our system is well within reach considering
that the GPUs we used in our experiments are about four times slower than the
most modern GPUs available.

Table 2. Tracking errors for the 2D point-tracking test data.

Mean Std 95% Min Max
[mm] [mm] [mm] [mm] [mm]

Sequence set
CIL 1.65 0.97 3.49 0.01 5.13
ETH 2.61 4.33 13.35 0.01 27.70
ICR 5.80 8.86 29.01 0.03 39.39
MED1 2.13 2.25 7.10 0.01 16.83
MED2 1.53 1.03 3.83 0.02 6.41

All sequences 2.83 4.86 13.13 0.01 39.39

1 http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using_cluster_

computing.html
2 The cluster of machines was managed using StarCluster.

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using_cluster_computing.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using_cluster_computing.html
http://star.mit.edu/cluster/


4 Conclusions

In this paper, we proposed a method of tracking target tissues in long (over one
minute) 2D ultrasound sequences of liver. The proposed method uses a ConvNet
to learn a distance metric which can then be used in a sliding window fashion
to determine the motion vector of the tissue from the previous to the current
frame. The experimental results were obtained using 24 sequences of ultrasound
with 62 annotated landmarks. The results showed the proposed method has
good average accuracy, though there were circumstances where the technique
“got lost” and produced results far from the target.

The current implementation is not computationally optimal. The embedding
of each window is computed independently, resulting in many redundant con-
volution operations. Using “fully convolutional networks” instead, we should be
able to reach real-time performance easily [16].

Because our ConvNet-based embedding function has many degrees of free-
dom, it exhibits high variance. In future work, we aim to reduce variance by
averaging the outputs of multiple networks trained on the same data but with
different random initialization. We’re also confident that running the embedding
function on patches flipped vertically and horizontally and averaging results
would lead to better generalization. These two techniques would both come at
the expense of slower runtime performance.

When calculating a distance map inside a given search window, we observe
that the map tends to be quite noisy. In future work, we want to look at smooth-
ing functions to be able to more robustly find the correct center pixel.
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