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Abstract. In ultrasound-guided procedures, such as high-intensity fo-
cused ultrasound or radio-frequency ablation, non-rigid clinical targets
may undergo displacements due to physiological motions. To cope with
that issue, the accurate estimation of the target motion is required in
order to adjust the position of medical tools. In this paper, we present a
robust approach that allows to track in real-time deformable targets in
3D ultrasound images. Our method combines visual motion estimation
with a mechanical model of the target. We demonstrate the good perfor-
mance of our approach by showing the tracking accuracy results on the
MICCAI CLUST’14 challenge database.

1 Introduction

Over the last few years, minimally-invasive procedures, such as high-intensity
focused ultrasound (HIFU), or radio-frequency ablation (RFA) have gained sig-
nificant attention due to the shorter recovery time compared to conventional
therapies. However, the quality of these therapies can strongly depend on both
the deformations and displacements of the clinical targets since the surgeon needs
to continuously adjust the positions of medical tools. Thus, to ensure the target
visibility under ultrasound (US) image guidance, several target tracking meth-
ods have been developed. The first type of method consists in extracting key
features in the US images such as target contours as proposed by Angelova and
Mihaylova [1]. Furthermore, the feature extraction can be based on a Bayesian
approach for increasing the tracking robustness. However, such features may not
be clearly visible in each frame of the US sequence. The second type of methods
is based on block-matching techniques, where target motions are computed from
small blocks displacements using similarity criterion like Sum of Squared Differ-
ences (SSD) [2], or Cross-Correlation (CC) [3]. However, these methods assume
that the displacement is the same within a local region block. The last type of
approaches are based on the optical flow estimation such as the method pro-
posed by Mikic et al. [4] or Lee et al. [5]. Nevertheless, due to the poor quality of



US images, such approaches may provide undesirable results. To cope with that
issue, the motion field can be regularized by using elastic or fluid-like operators
as it is proposed by Somphone et al. [6]. In order to ensure physically-plausible
motions, we recently presented in [7] a robust approach that combines a me-
chanical model and visual estimation. The good performance of this method has
been showed on data obtained from a deformable soft tissue phantom. In this
paper, we demonstrate that this method can achieve high accuracy on real-data
by testing our algorithm on the database proposed by the MICCAI CLUST’14
challenge. The rest of the paper is organized as follows. In section 2, we present
the method that allows to track deformable target in 3D ultrasound images. In
section 3, we describe the performance of our approach on real-data. Finally,
section 4 concludes the paper.

2 Method

The objective of our approach is to track the motions of a clinical target in 3D
ultrasound sequence. To do so, we first generate a mesh model of the target
by using a piece-wise affine warping function. Then, the model is linked to a
mechanical component in order to ensure physically-plausible motions. Finally,
we estimate the target displacements thanks to an additive-update approach
based on intensity variation.

2.1 Piece-wise Affine Model

In 3D US images, a clinical target can be represented by a continuous set of Nv

voxels that is delimited by a visible border. Typical examples are shown in Fig. 1.
In order to define the target, we first extract its shape at the initial 3D frame
of the US sequence by performing a segmentation. To remove sharp edges and
discontinuous shapes, a smoothing step is performed on the 3D segmented surface
and a corresponding fitted tetrahedral mesh containing Nc vertices is defined.
Then, in order to represent the displacements of the voxels, we propose to use a
piece-wise affine warp function. Our piece-wise affine warping is parameterized
from both the vertice positions and an affine interpolation that uses barycentric
coordinates as proposed in [8]. In this way, we can relate all the voxel positions
with all the vertices as follows:

pim = M.q (1)

where M is a (3 ·Nv)× (3 ·Nc) constant matrix defining the set of barycentric
coordinates. pim is a (3·Nv)×1 vector defining all the voxels positions, and q is a
(3 ·Nc)×1 vector containing all the vertices positions. Thanks to Eq. (1), we can
update the positions of the target when the vertices of the model are displaced.
To compensate the lack of smoothness as well as the poor estimation of vertice
positions in US images, we combine a mechanical model to the estimation of
displacement.



2.2 Mechanical Component

Our approach combines a mass-spring-damper system to the mesh model previ-
ously described. Thus, the vertice displacements are constrained by linking each
connected vertice pair with a spring ensuring physically-plausible and coherent
displacements of the vertices. Furthermore, the mass-spring-damper system can
be specifically characterized by setting a mass value to each vertex, together with
elastic and damping coefficients on each spring depending on the soft-tissues ho-
mogeneities. These values can be accurately estimated from elastography images.
From this model, we can compute the force fij = [fxij fyij fzij ]

T applied on a
vertice qi from a neighbor vertice qj . This force can be expressed as follows:

fij = Kij(dij − dinitij )(qi − qj) +Dij(q̇i − q̇j) ◦ (qi − qj) (2)

where dij and dinitij respectively represent the distance between the vertices qi

and qj at their current positions and at their initial positions. The ◦ operator
expresses the Hadamard product, Kij is a scalar value denoting the stiffness of
the spring that links the two vertices while Dij is the damping coefficient value.
By combining the previous equation for all the vertices, we can express the total
amount of forces fi exerted on each vertice qi of the mesh model as follows:

fi =

Ni∑
n=0

fin +Giq̇i (3)

Ni denotes the number of neighbors vertices connected to the vertice qi. Gi rep-
resents the velocity damping coefficient associated to the vertice qi. In order to
obtain the displacements ∆d associated to the mass-spring-damper system, we
integrate the forces expressed in Eq. (3) with a semi-implicit Euler integration
scheme. Such mechanical constraint can ensure the smoothness warping func-
tion of the deformation and limits the noise sensitivity of the intensity-based
approach.

2.3 Additive Update Tracking

Let us recall that the main objective of our approach is to estimate the new
positions of the target in 3D US sequence. To do so, we use an intensity-based
method that consists in evaluating the vertice displacements by minimizing a
dissimilarity function E. Therefore, we can express the cost function which min-
imizes image dissimilarity from the relationship described in Eq. (1) such that:

C(∆q) = E(It(pim(t)), It0(pim(t0))) = E(It(Mq(t)), It0(Mq(t0))) (4)

where Iti is a vector representing the US intensity of the volume acquired at time
index ti. ∆q denotes the vertices displacements. pim(ti) and q(ti) represent
respectively the voxel positions and the vertice positions at time index ti. In
order to determine the dissimilarity function E, we assume that the intensity
values of soft tissues are consistent over the time. Consequently, we propose to



use the Sum of Squared Differences (SSD) in order to measure the image error.
The cost function can now be expressed as:

C(∆q) = (It(M(q(t)− It0(M(q(t0))))2 (5)

The objective is to find iteratively the vertice displacements by minimizing the
cost function C. To do so, we perform a Taylor expansion of the previous equation
that leads to:

C(∆q) ≈ (J∆q + It(M(qk−1(t)))− It0(M(q(t0))))2 (6)

where qk−1(t) represents the estimation of the parameters at time t at iteration
k−1 of the optimization algorithm. J denotes the Jacobian matrix associated to
the cost function. This matrix relates the variation of the parameters ∆q with
the intensity variation of I. It can be computed as follows:

J = ∇I.M (7)

where ∇I denotes the gradient of the current 3D US frame. In order to obtain
the optimal displacements of the vertices, we chose to use a forward-additive
steepest gradient strategy as it is computationally efficient since it does not
require the calculation of pseudo-inverse of large Jacobian matrix. We therefore
obtain:

∆q = −αJt[It(M(qk−1(t)))− It0(M(q(t0)))] (8)

where α > 0 denotes the step size of the minimization strategy. Jt represents
the transpose matrix of the Jacobian J. As stated previously, in order to prevent
inaccurate results, we propose to combine this motion estimation with the in-
ternal displacements of the mass-spring-damper system. This can be performed
by iteratively estimate the optimal displacement as follows:

qk(t) = qk−1(t) +∆q +∆d (9)

where ∆d is the internal displacements obtained from the integration of forces
expressed in Eq. (3). ∆q represents the external displacements from the steepest
gradient strategy in Eq. (8). qk−1(t) denotes the estimation of vertice position at
iteration k−1 and at time index t. In order to balance the influence of the mass-
spring-damper system regarding to the motion estimation between ∆q and ∆d,
we can tune the α coefficient that represents the step size of the minimization
strategy in Eq.(8).

3 Results

3.1 Description of our Evaluation Environment

Our approach has been tested on real-data and has been implemented with
C++/GPU code by using Cuda and VTK libraries. The segmentation step in the
first volume is performed with the ITK-SNAP [9] software and can be executed
in less than 3 minutes. The mesh is generated thanks to the tetGen [10] software.
The resulted computation time of the online tracking is 350 ms allowing thus
real-time capabilities. The code was executed on a Windows 7 machine with an
Intel core i7-3840qm(2.80GHz).



3.2 Validation Results on Real-data

In order to evaluate our method, we used the database provided by the workshop
MICCAI CLUST’14 challenge. The main goal of this challenge is to compare
different state-of-the-art methods for tracking anatomical landmarks in US se-
quences. For this purpose, a database containing 2D/3D ultrasound sequences
of volunteers under free breathing is provided. Furthermore, in order to generate
ground truth data, the positions of the target landmarks are identified from ex-
pert annotations for each frame. Thus, a comparison can be performed between
the ground truth landmark positions and the warped point positions (estimated
from our model) over each frame. Is is worth mentioning that both the ultra-
sound sequences and the annotations are provided by several research institutes.
Thus, the approach has been tested by tracking 32 different anatomical features
acquired from 16 3D US sequences. In these experiments, we set empirically the
elastic and damping parameters such that Kij = 3.0 and Dij = 0.1 for all the
springs, along with Gi = 2.7 for all vertices. The step size of the steepest gradient
method has been set to α = 2× 10−6. In future work, we plan to automatically
estimate these parameters by using elastography images. The final results are
reported in table 1 and presented in the workshop website5. In the Fig. 1, the

Participants Mean (mm) SD (mm) 95th (mm)

Our method 1.62 2.19 4.81

Somphone O., et al. [6] 2.55 2.46 7.98

Rothlbbers S., et al. [11] 2.80 2.96 7.94

Lubke D., and Grozea C. [12] 4.63 4.03 12.44
Table 1. Results of 3D point-landmark tracking. The first column of the table details
the reference to each candidate method. The subsequent columns represent respectively
the mean error, the standard deviation, and the 95th percentile expressed in millimeters
for each approach.

performance of our approach is illustrated by showing the tracking results at
different frames on four landmarks representing hepatic vein bifurcations. The
Fig. 2 and Fig. 3 detail results for each target tracking task. From these figures,
we can notice that the mean tracking error is under 2 mm for most of the ultra-
sound sequences. However, we can observe that we obtained some unsatisfactory
results when the 3D mesh model goes out of the field of view (SMT-04 01), or
when the target follows high deformation regarding the provided elastic param-
eters (EMC-03 01). Furthermore, the error can be also higher due to the low
resolution of the ultrasound volume (e.g. ICR-02 01). However, the overall re-
sults are very encouraging since our approach performs more accurate tracking of
landmark points than other candidate methods and achieves real-time capabili-
ties. In addition, we can notice that our method remains robust with empirical
parameters.

5 http://clust14.ethz.ch/results.html



(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 1. Example of the tracking task on several sequences. (a-b-c) Tracking of landmark
representing hepatic vein bifurcation. The white cross represents the point position in
Y-slice at frame index 00 (a), 08 (b), 12 (c). (d-e-f) Tracking of landmark representing
vein birfucation in another 3D US sequence at frame index 00 (d), 05 (e), 12 (f). (g-h-i)
Tracking of landmark representing portal vein birfucation at frame index 00 (g), 23 (h),
59 (i). (j-k-l) Tracking of landmark representing first degree bifurcation of hepatic bile
duct. The red model represents the associated 3D tetrahedral mesh model at frame
index 00 (j), 28 (k), 78 (l).



Fig. 2. Tracking error results for each sequence. The x-axis and y-axis represent re-
spectively each ultrasound sequence and the associated tracking error expressed in
millimeters. The name of the sequence (EMC-02 1) represent both the acronym of
the institute and the sequence index. (Red) Mean tracking error estimated from eu-
clidean distance. (Black box) Mean error ± standard deviation. (Whiskers) Minimum
and maximum errors. (Green dot) 95th percentile of error.

Fig. 3. Tracking error results for each tracking task. The x-axis and y-axis represent
respectively each ultrasound sequence and the associated tracking error expressed in
millimeters. The name of the sequence (e.g. SMT-04 1) represent both the acronym
of the institute and the sequence index. (Red) Mean tracking error estimated from
euclidean distance. (Black box) Mean error ± standard deviation. (Whiskers) Minimum
and maximum errors. (Green dot) 95th percentile of error.



4 Conclusion

In this paper, we presented a method for tracking and automatically compen-
sating the displacements of a deformable target in 3D ultrasound images. The
robustness of our tracking method is ensured by combining a mechanical model
to the displacement estimation. We evaluated the good performance of our ap-
proach through CLUST’14 challenge database. In future work, we plan to auto-
matically estimate the elastic parameters by using elastography images.
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